Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Metabolites ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668315

RESUMEN

Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis. PARP inhibitors have been shown to influence muscle degeneration, including mitochondrial hemostasis, oxidative stress, inflammation and metabolic activity, and reduced degenerative changes in a knockout mouse model. Tenotomized infraspinatus were assessed for muscle degeneration for 16 weeks using a Swiss Alpine sheep model (n = 6). All sheep received daily oral administration of 0.5 mg Talazoparib. Due to animal ethics, the treatment group was compared with three different controls from prior studies of our institution. To mitigate potential batch heterogeneity, PARP-I was evaluated in comparison with three distinct control groups (n = 6 per control group) using the same protocol without treatment. The control sheep were treated with an identical study protocol without Talazoparib treatment. Muscle atrophy and fatty infiltration were evaluated at 0, 6 and 16 weeks post-tenotomy using DIXON-MRI. The controls and PARP-I showed a significant (control p < 0.001, PARP-I p = 0.01) decrease in muscle volume after 6 weeks. However, significantly less (p = 0.01) atrophy was observed in PARP-I after 6 weeks (control 1: 76.6 ± 8.7%; control 2: 80.3 ± 9.3%, control 3: 73.8 ± 6.7% vs. PARP-I: 90.8 ± 5.1% of the original volume) and 16 weeks (control 1: 75.7 ± 9.9; control 2: 74.2 ± 5.6%; control 3: 75.3 ± 7.4% vs. PARP-I 93.3 ± 10.6% of the original volume). All experimental groups exhibited a statistically significant (p < 0.001) augmentation in fatty infiltration following a 16-week period when compared to the initial timepoint. However, the PARP-I showed significantly less fatty infiltration (p < 0.003) compared to all controls (control 1: 55.6 ± 6.7%, control 2: 53.4 ± 9.4%, control 3: 52.0 ± 12.8% vs. PARP-I: 33.5 ± 8.4%). Finally, a significantly (p < 0.04) higher proportion and size of fast myosin heavy chain-II fiber type was observed in the treatment group. This study shows that PARP-inhibition with Talazoparib inhibits the progression of both muscle atrophy and fatty infiltration over 16 weeks in retracted sheep musculotendinous units.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119610, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37913845

RESUMEN

BACKGROUND: We tested whether enhancing the capacity for calcium/calmodulin-dependent protein kinase type II (CaMKII) signaling would delay fatigue of excitation-induced calcium release and improve contractile characteristics of skeletal muscle during fatiguing exercise. METHODS: Fast and slow type muscle, gastrocnemius medialis (GM) and soleus (SOL), of rats and mouse interosseus (IO) muscle fibers, were transfected with pcDNA3-based plasmids for rat α and ß CaMKII or empty controls. Levels of CaMKII, its T287-phosphorylation (pT287-CaMKII), and phosphorylation of components of calcium release and re-uptake, ryanodine receptor 1 (pS2843-RyR1) and phospholamban (pT17-PLN), were quantified biochemically. Sarcoplasmic calcium in transfected muscle fibers was monitored microscopically during trains of electrical excitation based on Fluo-4 FF fluorescence (n = 5-7). Effects of low- (n = 6) and high- (n = 8) intensity exercise on pT287-CaMKII and contractile characteristics were studied in situ. RESULTS: Co-transfection with αCaMKII-pcDNA3/ßCaMKII-pcDNA3 increased α and ßCaMKII levels in SOL (+45.8 %, +250.5 %) and GM (+40.4 %, +89.9 %) muscle fibers compared to control transfection. High-intensity exercise increased pT287-ßCaMKII and pS2843-RyR1 levels in SOL (+269 %, +151 %) and GM (+354 %, +119 %), but decreased pT287-αCaMKII and p17-PLN levels in GM compared to SOL (-76 % vs. +166 %; 0 % vs. +128 %). α/ß CaMKII overexpression attenuated the decline of calcium release in muscle fibers with repeated excitation, and mitigated exercise-induced deterioration of rates in force production, and passive force, in a muscle-dependent manner, in correlation with pS2843-RyR1 and pT17-PLN levels (|r| > 0.7). CONCLUSION: Enhanced capacity for α/ß CaMKII signaling improves fatigue-resistance of active and passive contractile muscle properties in association with RyR1- and PLN-related improvements in sarcoplasmic calcium release.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Ratas , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Señalización del Calcio , Contracción Muscular
3.
Orthop J Sports Med ; 11(9): 23259671231196875, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37736603

RESUMEN

Background: Healing of the rotator cuff after repair constitutes a major clinical challenge with reported high failure rates. Identifying structural musculotendinous predictors for failed rotator cuff repair could enable improved diagnosis and management of patients with rotator cuff disease. Purpose: To investigate structural predictors of the musculotendinous unit for failed tendon healing after rotator cuff repair. Study Design: Cohort study; Level of evidence, 2. Methods: Included were 116 shoulders of 115 consecutive patients with supraspinatus (SSP) tear documented on magnetic resonance imaging (MRI) who were treated with an arthroscopic rotator cuff repair. Preoperative assessment included standardized clinical and imaging (MRI) examinations. Intraoperatively, biopsies of the joint capsule, the SSP tendon, and muscle were harvested for histological assessment. At 3 and 12 months postoperatively, patients were re-examined clinically and with MRI. Structural and clinical predictors of healing were evaluated using logistic and linear regression models. Results: Structural failure of tendon repair, which was significantly associated with poorer clinical outcome, was associated with older age (ß = 1.12; 95% CI, 1.03 to 1.26; P = .03), shorter SSP tendon length (ß = 0.89; 95% CI, 0.8 to 0.98; P = .02), and increased proportion of slow myosin heavy chain (MHC)-I/fast MHC-II hybrid muscle fibers (ß = 1.23; 95% CI, 1.07 to 1.42; P = .004). Primary clinical outcome (12-month postoperative Constant score) was significantly less favorable for shoulders with fatty infiltration of the infraspinatus muscle (ß = -4.71; 95% CI, -9.30 to -0.12; P = .044). Conversely, a high content of fast MHC-II muscle fibers (ß = 0.24; 95% CI, 0.026 to 0.44; P = .028) was associated with better clinical outcome. Conclusion: Both decreased tendon length and increased hybrid muscle fiber type were independent predictors for retear. Clinical outcome was compromised by tendon retearing and increased fatty infiltration of the infraspinatus muscle. A high content of fast MHC-II SSP muscle fibers was associated with a better clinical outcome. Registration: NCT02123784 (ClinicalTrials.govidentifier).

4.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298293

RESUMEN

We studied the relationship between neuronal NO synthase (nNOS) expression and capillarity in the tibialis anterior (TA) muscle of mice subjected to treadmill training. The mRNA (+131%) and protein (+63%) levels of nNOS were higher (p ≤ 0.05) in the TA muscle of C57BL/6 mice undergoing treadmill training for 28 days than in those of littermates remaining sedentary, indicating an up-regulation of nNOS by endurance exercise. Both TA muscles of 16 C57BL/6 mice were subjected to gene electroporation with either the pIRES2-ZsGreen1 plasmid (control plasmid) or the pIRES2-ZsGreen1-nNOS gene-inserted plasmid (nNOS plasmid). Subsequently, one group of mice (n = 8) underwent treadmill training for seven days, while the second group of mice (n = 8) remained sedentary. At study end, 12-18% of TA muscle fibers expressed the fluorescent reporter gene ZsGreen1. Immunofluorescence for nNOS was 23% higher (p ≤ 0.05) in ZsGreen1-positive fibers than ZsGreen1-negative fibers from the nNOS-transfected TA muscle of mice subjected to treadmill training. Capillary contacts around myosin heavy-chain (MHC)-IIb immunoreactive fibers (14.2%; p ≤ 0.05) were only higher in ZsGreen1-positive fibers than ZsGreen1-negative fibers in the nNOS-plasmid-transfected TA muscles of trained mice. Our observations are in line with an angiogenic effect of quantitative increases in nNOS expression, specifically in type-IIb muscle fibers after treadmill training.


Asunto(s)
Músculo Esquelético , Condicionamiento Físico Animal , Animales , Ratones , Fenómenos Fisiológicos Cardiovasculares , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Regulación hacia Arriba
5.
Genes (Basel) ; 14(6)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37372345

RESUMEN

Background: The training of elite skiers follows a systematic seasonal periodization with a preparation period, when anaerobic muscle strength, aerobic capacity, and cardio-metabolic recovery are specifically conditioned to provide extra capacity for developing ski-specific physical fitness in the subsequent competition period. We hypothesized that periodization-induced alterations in muscle and metabolic performance demonstrate important variability, which in part is explained by gene-associated factors in association with sex and age. Methods: A total of 34 elite skiers (20.4 ± 3.1 years, 19 women, 15 men) underwent exhaustive cardiopulmonary exercise and isokinetic strength testing before and after the preparation and subsequent competition periods of the World Cup skiing seasons 2015-2018. Biometric data were recorded, and frequent polymorphisms in five fitness genes, ACE-I/D (rs1799752), TNC (rs2104772), ACTN3 (rs1815739), and PTK2 (rs7460, rs7843014), were determined with specific PCR reactions on collected DNA. Relative percentage changes of cardio-pulmonary and skeletal muscle metabolism and performance over the two seasonal periods were calculated for 160 data points and subjected to analysis of variance (ANOVA) to identify hypothesized and novel associations between performance alterations and the five respective genotypes and determine the influence of age × sex. A threshold of 0.1 for the effect size (h2) was deemed appropriate to identify relevant associations and motivate a post hoc test to localize effects. Results: The preparation and competition periods produced antidromic functional changes, the extent of which varied with increasing importance for anaerobic strength, aerobic performance, cardio-metabolic efficiency, and cardio-metabolic/muscle recovery. Only peak RER (-14%), but not anaerobic strength and peak aerobic performance, and parameters characterizing cardio-metabolic efficiency, differed between the first and last studied skiing seasons because improvements over the preparation period were mostly lost over the competition period. A number of functional parameters demonstrated associations of variability in periodic changes with a given genotype, and this was considerably influenced by athlete "age", but not "sex". This concerned age-dependent associations between periodic changes in muscle-related parameters, such as anaerobic strength for low and high angular velocities of extension and flexion and blood lactate concentration, with rs1799752 and rs2104772, whose gene products relate to sarcopenia. By contrast, the variance in period-dependent changes in body mass and peak VO2 with rs1799752 and rs2104772, respectively, was independent of age. Likely, the variance in periodic changes in the reliance of aerobic performance on lactate, oxygen uptake, and heart rate was associated with rs1815739 independent of age. These associations manifested at the post hoc level in genotype-associated differences in critical performance parameters. ACTN3 T-allele carriers demonstrated, compared to non-carriers, largely different periodic changes in the muscle-associated parameters of aerobic metabolism during exhaustive exercise, including blood lactate and respiration exchange ratio. The homozygous T-allele carriers of rs2104772 demonstrated the largest changes in extension strength at low angular velocity during the preparation period. Conclusions: Physiological characteristics of performance in skiing athletes undergo training period-dependent seasonal alterations the extent of which is largest for muscle metabolism-related parameters. Genotype associations for the variability in changes of aerobic metabolism-associated power output during exhaustive exercise and anaerobic peak power over the preparation and competition period motivate personalized training regimes. This may help to predict and maximize the benefit of physical conditioning of elite skiers based on chronological characteristics and the polymorphisms of the ACTN3, ACE, and TNC genes investigated here.


Asunto(s)
Fuerza Muscular , Consumo de Oxígeno , Masculino , Humanos , Femenino , Estaciones del Año , Consumo de Oxígeno/genética , Fuerza Muscular/genética , Músculo Esquelético/fisiología , Ácido Láctico , Actinina
6.
Genes (Basel) ; 14(5)2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37239460

RESUMEN

Background: The prominent insertion/deletion polymorphism in the gene for the major modulator of tissue perfusion, angiotensin-converting enzyme (ACE-I/D) is associated with variability in adjustments in cardiac and skeletal muscle performance with standard forms of endurance and strength type training. Here, we tested whether the ACE-I/D genotype would be associated with variability in the effects of interval-type training on peak and aerobic performance of peripheral muscle and cardio-vasculature and post-exercise recovery. Methods: Nine healthy subjects (39.0 ± 14.7 years of age; 64.6 ± 16.1 kg, 173.6 ± 9.9) completed eight weeks of interval training on a soft robotic device based on repeated sets of a pedaling exercise at a matched intensity relative to their peak aerobic power output. Prior to and post-training, peak anaerobic and aerobic power output was assessed, mechanical work and metabolic stress (oxygen saturation and hemoglobin concentrations of Musculus vastus lateralis (VAS) and Musculus gastrocnemius (GAS), blood lactate and factors setting cardiac output such as heart rate, systolic and diastolic blood pressure were monitored during ramp-incremental exercise and interval exercise with the calculation of areas under the curve (AUC), which were put in relation to the produced muscle work. Genotyping was performed based on I- and D-allele-specific polymerase chain reactions on genomic DNA from mucosal swaps. The significance of interaction effects between training and ACE I-allele on absolute and work-related values was assessed with repeated measures ANOVA. Results: Subjects delivered 87% more muscle work/power, 106% more cardiac output, and muscles experienced ~72% more of a deficit in oxygen saturation and a ~35% higher passage of total hemoglobin during single interval exercise after the eight weeks of training. Interval training affected aspects of skeletal muscle metabolism and performance, whose variability was associated with the ACE I-allele. This concerned the economically favorable alterations in the work-related AUC for the deficit of SmO2 in the VAS and GAS muscles during the ramp exercise for the I-allele carriers and opposing deteriorations in non-carriers. Conversely, oxygen saturation in the VAS and GAS at rest and during interval exercise was selectively improved after training for the non-carriers of the I-allele when the AUC of tHb per work during interval exercise deteriorated in the carriers. Training also improved aerobic peak power output by 4% in the carriers but not the non-carriers (p = 0.772) of the ACE I-allele while reducing negative peak power (-27.0%) to a lesser extent in the ACE I-allele carriers than the non-carriers. Variability in cardiac parameters (i.e., the AUC of heart rate and glucose during ramp exercise, was similar to the time to recovery of maximal tHb in both muscles after cessation of ramp exercise, only associated with the ACE I-allele but not training per se. Diastolic blood pressure and cardiac output during recovery from exhaustive ramp exercise demonstrated a trend for training-associated differences in association with the ACE I-allele. Discussion: The exercise-type dependent manifestation of antidromic adjustments in leg muscle perfusion and associated local aerobic metabolism between carriers and non-carriers of the ACE I-allele with the interval-training highlight that non-carriers of the I-allele do not present an essential handicap to improve perfusion-related aerobic muscle metabolism but that the manifestation of responsiveness depends on the produced work. Conclusions: The deployed interval-type of exercise produced ACE I-allele-related differences in the alterations of negative anaerobic performance and perfusion-related aerobic muscle metabolism, which manifestation is exercise specific. The training-invariant ACE I-allele-associated differences in heart rate and blood glucose concentration emphasize that the repeated impact of the interval stimulus, despite a near doubling of the initial metabolic load, was insufficient to overturn ACE-related genetic influences on cardiovascular function.


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Humanos , Alelos , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Músculo Esquelético/metabolismo , Polimorfismo Genético
7.
Genes (Basel) ; 13(10)2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36292682

RESUMEN

BACKGROUND: Skiing is a popular outdoor sport posing different requirements on musculoskeletal and cardiorespiratory function to excel in competition. The extent to which genotypic features contribute to the development of performance with years of ski-specific training remains to be elucidated. We therefore tested whether prominent polymorphisms in genes for angiotensin converting enzyme (ACE-I/D, rs1799752), tenascin-C (TNC, rs2104772), actinin-3 (ACTN3, rs1815739) and PTK2 (rs7460 and rs7843014) are associated with the differentiation of cellular hallmarks of muscle metabolism and contraction in high level skiers. MATERIAL & METHODS: Forty-three skiers of a world-leading national ski team performed exhaustive cardiopulmonary exercise testing as well as isokinetic strength testing for single contractions, whereby 230 cardiopulmonary measurements were performed in the period from 2015-2018. A total of 168 and 62 data measurements were from the Alpine and Nordic skiing squads, respectively. Ninety-five and one hundred thirty-five measurements, respectively, were from male and female athletes. The average (±SD) age was 21.5 ± 3.0 years, height 174.0 ± 8.7 cm, and weight 71.0 ± 10.9 kg for the analysed skiers. Furthermore, all skiers were analysed concerning their genotype ACE-I/D, Tenascin C, ACTN3, PTK2. RESULTS: The genotype distribution deviated from Hardy-Weinberg equilibrium for the ACTN3 genotype, where rs1815739-TT genotypes (corresponding to the nonsense mutation) were overrepresented in world-class skiers, indicating a slow muscle fibre phenotype. Furthermore, the heterozygous rs2104772-AT genotypes of TNC also demonstrated the best scaled peak power output values during ramp exercise to exhaustion. The highest values under maximum performance for heart rate were associated with the rs1799752-II and rs1815739-CC genotypes. The lowest values for peak power of single contractions were achieved for rs1815739-CC, rs1799752-II and rs7843014-CT genotypes. The skiing discipline demonstrated a main influence on cardiorespiratory parameters but did not further interact with genotype-associated variability in performance. DISCUSSION: Classically, it is pointed out that muscles of, for example, alpine skiers do not possess a distinct fibre type composition, but that skiers tend to have a preponderance of slow-twitch fibres. Consequently, our findings of an overrepresentation of ACTN3-TT genotypes in a highly selective sample of elite world class skiers support the potential superiority of a slow fibre type distribution. CONCLUSIONS: We suggest that one competitive advantage that results from a slow, typically fatigue-resistant fibre type distribution might be that performance during intense training days is better preserved, whereby simply a higher technical training volume can be performed, yielding to a competitive advantage.


Asunto(s)
Esquí , Masculino , Femenino , Humanos , Esquí/fisiología , Actinina/genética , Peptidil-Dipeptidasa A/genética , Tenascina/genética , Codón sin Sentido , Atletas , Fibras Musculares Esqueléticas/fisiología
8.
Front Physiol ; 13: 933792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148310

RESUMEN

Homozygous carriers of the deletion allele in the gene for angiotensin-converting enzyme (ACE-DD) demonstrate an elevated risk to develop inactivity-related type II diabetes and show an overshoot of blood glucose concentration with enduring exercise compared to insertion allele carriers. We hypothesized that ACE-DD genotypes exhibit a perturbed activity of signaling processes governing capillary-dependent glucose uptake in vastus lateralis muscle during exhaustive cycling exercise, which is associated with the aerobic fitness state. 27 healthy, male white Caucasian subjects (26.8 ± 1.1 years; BMI 23.6 +/- 0.6 kg m-2) were characterized for their aerobic fitness based on a threshold of 50 ml O2 min-1 kg-1 and the ACE-I/D genotype. Subjects completed a session of exhaustive one-legged exercise in the fasted state under concomitant measurement of cardiorespiratory function. Capillary blood and biopsies were collected before, and ½ and 8 h after exercise to quantify glucose and lipid metabolism-related compounds (lipoproteins, total cholesterol, ketones) in blood, the phosphorylation of 45 signaling proteins, muscle glycogen and capillaries. Effects of aerobic fitness, ACE-I/D genotype, and exercise were assessed with analysis of variance (ANOVA) under the hypothesis of a dominant effect of the insertion allele. Exertion with one-legged exercise manifested in a reduction of glycogen concentration ½ h after exercise (-0.046 mg glycogen mg-1 protein). Blood glucose concentration rose immediately after exercise in association with the ACE-I/D genotype (ACE-DD: +26%, ACE-ID/II: +6%) and independent of the fitness state (p = 0.452). Variability in total cholesterol was associated with exercise and fitness. In fit subjects, the phosphorylation levels of glucose uptake-regulating kinases [AKT-pT308 (+156%), SRC-pY419, p38α-pT180/T182, HCK-pY411], as well as cytokine/angiotensin 1-7 signaling factors [(STAT5A-pY694, STAT5B-pY699, FYN-pY420, EGFR-pY1086] were higher in angiotensin converting enzyme I-allele carriers than ACE-DD genotypes after exercise. Conversely, the AKT-S473 phosphorylation level (+117%) and angiotensin 2's blood concentration (+191%) were higher in ACE-DD genotypes. AKT-S473 phosphorylation levels post-exercise correlated to anatomical parameters of muscle performance and metabolic parameters (p < 0.05 and │r│>0.70). The observations identify reciprocal alterations of S473 and T308 phosphorylation of AKT as gatekeeper of a post-translational dysregulation of transcapillary glucose uptake in ACE-DD genotypes which may be targeted in personalized approaches to mitigate type II diabetes.

9.
Front Sports Act Living ; 4: 814974, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663500

RESUMEN

Background: The efficiency of aerobic energy provision to working skeletal muscle is affected by aerobic fitness and a prominent insertion/deletion polymorphism in the angiotensin-converting enzyme (ACE-I/D) gene for the major modulator of tissue perfusion. We assessed whether variability in the fitness state is dependent on the contribution of multiple aspects of oxygen transport to the development of muscle power, and the respective control coefficients, are associated with the ACE-I/D genotype. Methods: Twenty-five women and 19 men completed a ramp test of cycling exercise to exhaustion during which serial steps of oxygen transport [oxygen uptake (L O2 min-1) (VO2), minute ventilation in (L min-1) (VE), cardiac output in equivalents of L min-1 (Q), arterial oxygen saturation (SpO2), muscle oxygen saturation (SmO2), and total hemoglobin concentration (g dL-1) (THb) in Musculus vastus lateralis and Musculus gastrocnemius, respiration exchange ratio (RER)], blood lactate and glucose concentration, were continuously monitored. The contribution/reliance of power output (PO) on the parameters of oxygen transport was estimated based on the slopes in Pearson's moment correlations (|r| > 0.65, p < 0.05) vs. power values over the work phase of the ramp test, and for respective fractional changes per time (defining control coefficients) over the rest, work, and recovery phase of the ramp test. Associations of variability in slopes and control coefficients with the genotype and aerobic fitness were evaluated with ANOVA. Results: All parameters characterizing aspects of the pathway of oxygen, except THb, presented strong linear relationships [(|r| > 0.70) to PO]. Metabolic efficiency was 30% higher in the aerobically fit subjects [peak oxygen uptake (mL O2 min-1) (VO2peak) ≥ 50 ml min-1 kg-1], and energy expenditure at rest was associated with the fitness state × ACE-I/D genotype, being highest in the fit non-carriers of the ACE D-allele. For VO2, VE, and RER the power-related slopes of linear relationships during work demonstrated an association with aerobic fitness, being 30-40% steeper in the aerobically fit than unfit subjects. For VE the power-related slope also demonstrated an association with the ACE-I/D genotype. For increasing deficit in muscle oxygen saturation (DSmO2) in Musculus vastus lateralis (DSmO2 Vas), the power-related slope was associated with the interaction between aerobic fitness × ACE-I/D genotype. Conclusion: Local and systemic aspects of aerobic energy provision stand under influence of the fitness state and ACE-I/D genotype. This especially concerns the association with the index of the muscle's mitochondrial respiration (SmO2) which compares to the genetic influences of endurance training.

10.
Front Sports Act Living ; 4: 814975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295536

RESUMEN

Introduction: The insertion/deletion (I/D) polymorphism in the gene for the major regulator of vascular tone, angiotensin-converting enzyme-insertion/deletion (ACE-I/D) affects muscle capillarization and mitochondrial biogenesis with endurance training. We tested whether changes of leg muscle oxygen saturation (SmO2) during exhaustive exercise and recovery would depend on the aerobic fitness status and the ACE I/D polymorphism. Methods: In total, 34 healthy subjects (age: 31.8 ± 10.2 years, 17 male, 17 female) performed an incremental exercise test to exhaustion. SmO2 in musculus vastus lateralis (VAS) and musculus gastrocnemius (GAS) was recorded with near-IR spectroscopy. Effects of the aerobic fitness status (based on a VO2peak cutoff value of 50 ml O2 min-1 kg-1) and the ACE-I/D genotype (detected by PCR) on kinetic parameters of muscle deoxygenation and reoxygenation were assessed with univariate ANOVA. Results: Deoxygenation with exercise was comparable in VAS and GAS (p = 0.321). In both leg muscles, deoxygenation and reoxygenation were 1.5-fold higher in the fit than the unfit volunteers. Differences in muscle deoxygenation, but not VO2peak, were associated with gender-independent (p > 0.58) interaction effects between aerobic fitness × ACE-I/D genotype; being reflected in a 2-fold accelerated deoxygenation of VAS for aerobically fit than unfit ACE-II genotypes and a 2-fold higher deoxygenation of GAS for fit ACE-II genotypes than fit D-allele carriers. Discussion: Aerobically fit subjects demonstrated increased rates of leg muscle deoxygenation and reoxygenation. Together with the higher muscle deoxygenation in aerobically fit ACE-II genotypes, this suggests that an ACE-I/D genotype-based personalization of training protocols might serve to best improve aerobic performance.

11.
PNAS Nexus ; 1(3): pgac086, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36741463

RESUMEN

Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber-matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.

12.
Am J Sports Med ; 49(14): 3970-3980, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34714701

RESUMEN

BACKGROUND: The injection of mesenchymal stem cells (MSCs) mitigates fat accumulation in released rotator cuff muscle after tendon repair in rodents. PURPOSE: To investigate whether the injection of autologous MSCs halts muscle-to-fat conversion after tendon repair in a large animal model for rotator cuff tendon release via regional effects on extracellular fat tissue and muscle fiber regeneration. STUDY DESIGN: Controlled laboratory study. METHODS: Infraspinatus (ISP) muscles of the right shoulder of Swiss Alpine sheep (n = 14) were released by osteotomy and reattached 16 weeks later without (group T; n = 6) or with (group T-MSC; n = 8) electropulse-assisted injection of 0.9 Mio fluorescently labeled MSCs as microtissues with media in demarcated regions; animals were allowed 6 weeks of recovery. ISP volume and composition were documented with computed tomography and magnetic resonance imaging. Area percentages of muscle fiber types, fat, extracellular ground substance, and fluorescence-positive tissue; mean cross-sectional area (MCSA) of muscle fibers; and expression of myogenic (myogenin), regeneration (tenascin-C), and adipogenic markers (peroxisome proliferator-activated receptor gamma [PPARG2]) were quantified in injected and noninjected regions after recovery. RESULTS: At 16 weeks after tendon release, the ISP volume was reduced and the fat fraction of ISP muscle was increased in group T (137 vs 185 mL; 49% vs 7%) and group T-MSC (130 vs 166 mL; 53% vs 10%). In group T-MSC versus group T, changes during recovery after tendon reattachment were abrogated for fat-free mass (-5% vs -29%, respectively; P = .018) and fat fraction (+1% vs +24%, respectively; P = .009%). The area percentage of fat was lower (9% vs 20%; P = .018) and the percentage of the extracellular ground substance was higher (26% vs 20%; P = .007) in the noninjected ISP region for group T-MSC versus group T, respectively. Regionally, MCS injection increased tenascin-C levels (+59%) and the water fraction, maintaining the reduced PPARG2 levels but not the 29% increased fiber MCSA, with media injection. CONCLUSION: In a sheep model, injection of autologous MSCs in degenerated rotator cuff muscle halted muscle-to-fat conversion during recovery from tendon repair by preserving fat-free mass in association with extracellular reactions and stopping adjuvant-induced muscle fiber hypertrophy. CLINICAL RELEVANCE: A relatively small dose of MSCs is therapeutically effective to halt fatty atrophy in a large animal model.


Asunto(s)
Células Madre Mesenquimatosas , Lesiones del Manguito de los Rotadores , Animales , Atrofia/patología , Atrofia Muscular/patología , Manguito de los Rotadores/patología , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Ovinos , Tendones/patología , Tenotomía
13.
Sci Rep ; 11(1): 16405, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385505

RESUMEN

As the excitation-contraction coupling is inseparable during voluntary exercise, the relative contribution of the mechanical and neural input on hypertrophy-related molecular signalling is still poorly understood. Herein, we use a rat in-vivo strength exercise model with an electrically-induced standardized excitation pattern, previously shown to induce a load-dependent increase in myonuclear number and hypertrophy, to study acute effects of load on molecular signalling. We assessed protein abundance and specific phosphorylation of the four protein kinases FAK, mTOR, p70S6K and JNK after 2, 10 and 28 min of a low- or high-load contraction, in order to assess the effects of load, exercise duration and muscle-type on their response to exercise. Specific phosphorylation of mTOR, p70S6K and JNK was increased after 28 min of exercise under the low- and high-load protocol. Elevated phosphorylation of mTOR and JNK was detectable already after 2 and 10 min of exercise, respectively, but greatest after 28 min of exercise, and JNK phosphorylation was highly load-dependent. The abundance of all four kinases was higher in TA compared to EDL muscle, p70S6K abundance was increased after exercise in a load-independent manner, and FAK and JNK abundance was reduced after 28 min of exercise in both the exercised and control muscles. In conclusion, the current study shows that JNK activation after a single resistance exercise is load-specific, resembling the previously reported degree of myonuclear accrual and muscle hypertrophy with repetition of the exercise stimulus.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Músculo Esquelético/metabolismo , Animales , Hipertrofia/metabolismo , Masculino , Contracción Muscular/fisiología , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
14.
Sci Rep ; 10(1): 6578, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313031

RESUMEN

Skeletal muscle capillarization is a determining factor in gas and metabolite exchange, while its impairments may contribute to the development of sarcopenia. Studies on the potential of resistance training (RT) to induce angiogenesis in older muscles have been inconclusive, and effects of sequential endurance training (ET) and RT on capillarization are unknown. Healthy older men (66.5 ± 3.8 years) were engaged in either 12 weeks of habitual course observation (HC) followed by 12 weeks of RT (n = 8), or 12 weeks of high-intensity interval training (HIIT) followed by 12 weeks of RT (n = 9). At baseline, following 12 and 24 weeks, m. vastus lateralis biopsies were obtained. (Immuno-)histochemistry was used to assess indices of muscle fiber capillarization, muscle fiber morphology and succinate dehydrogenase (SDH) activity. Single periods of RT and HIIT resulted in similar improvements in capillarization and SDH activity. During RT following HIIT, improved capillarization and SDH activity, as well as muscle fiber morphology remained unchanged. The applied RT and HIIT protocols were thus similarly effective in enhancing capillarization and oxidative enzyme activity and RT effectively preserved HIIT-induced adaptations of these parameters. Hence, both, RT and HIIT, are valid training modalities for older men to improve skeletal muscle vascularization.


Asunto(s)
Envejecimiento/fisiología , Ejercicio Físico , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Adaptación Fisiológica , Anciano , Envejecimiento/genética , Composición Corporal/fisiología , Capilares/crecimiento & desarrollo , Capilares/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Factores de Riesgo , Sarcopenia/fisiopatología
15.
Am J Pathol ; 190(7): 1513-1529, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32305353

RESUMEN

Atrophy and fat accumulation are debilitating aspects of muscle diseases and are rarely prevented. Using a vertical approach combining anatomic techniques with omics methodology in a tenotomy-induced sheep model of rotator cuff disease, we tested whether mitochondrial dysfunction is implicated in muscle wasting and perturbed lipid metabolism, speculating that both can be prevented by the stimulation of ß-oxidation with l-carnitine. The infraspinatus muscle lost 22% of its volume over the first 6 weeks after tenotomy before the area-percentage of lipid increased from 8% to 18% at week 16. Atrophy was associated with the down-regulation of mitochondrial transcripts and protein and a slow-to-fast shift in muscle composition. Correspondingly, amino acid levels were increased 2 weeks after tendon release, when the levels of high-energy phosphates and glycerophospholipids were lowered. l-Carnitine administration (0.9 g/kg per day) prevented atrophy over the first 2 weeks, and mitigated alterations of glutamate, glycerophospholipids, and carnitine levels in released muscle, but did not prevent the level decrease in high-energy phosphates or protein constituents of mitochondrial respiration, promoting the accumulation of longer lipids with an increasing saturation. We conclude that the early phase of infraspinatus muscle degeneration after tendon release involves the elimination of oxidative characteristics associated with an aberrant accumulation of lipid species but is largely unrelated to the prevention of atrophy with oral l-carnitine administration.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Mitocondrias/metabolismo , Atrofia Muscular/metabolismo , Lesiones del Manguito de los Rotadores/metabolismo , Lesiones del Manguito de los Rotadores/patología , Animales , Regulación hacia Abajo , Femenino , Atrofia Muscular/etiología , Atrofia Muscular/patología , Manguito de los Rotadores/metabolismo , Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/complicaciones , Ovinos , Tenotomía
16.
BMC Res Notes ; 13(1): 78, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066496

RESUMEN

OBJECTIVE: Expression of the de-adhesive extracellular matrix protein tenascin-C (TNC) is associated with the early postnatal development of articular cartilage which is both load-dependent and associated with chondrocyte differentiation. We assessed morphological changes in the articular cartilage of TNC deficient mice at postnatal ages of 1, 4 and 8 weeks compared to age-matched wildtype mice. RESULTS: Cartilage integrity was assessed based on hematoxylin and eosin stained-sections from the tibial bone using a modified Mankin score. Chondrocyte density and cartilage thickness were assessed morphometrically. TNC expression was localized based on immunostaining. At 8 weeks of age, the formed tangential/transitional zone of the articular cartilage was 27% thicker and the density of chondrocytes in the articular cartilage was 55% lower in wildtype than the TNC-deficient mice. TNC protein expression was associated with chondrocytes. No relevant changes were found in mice at 1 and 4 weeks of age. The findings indicate a role of tenascin-C in the post-natal maturation of the extracellular matrix in articular cartilage. This might be a compensatory mechanism to strengthen resilience against mechanical stress.


Asunto(s)
Cartílago Articular/metabolismo , Tenascina/metabolismo , Envejecimiento/patología , Animales , Cartílago Articular/patología , Recuento de Células , Genotipo , Ratones , Tenascina/deficiencia
17.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383837

RESUMEN

BACKGROUND: Conventional forms of endurance training based on shortening contractions improve aerobic capacity but elicit a detriment of muscle strength. We hypothesized that eccentric interval training, loading muscle during the lengthening phase of contraction, overcome this interference and potentially adverse cardiovascular reactions, enhancing both muscle metabolism and strength, in association with the stress experienced during exercise. METHODS: Twelve healthy participants completed an eight-week program of work-matched progressive interval-type pedaling exercise on a soft robot under predominately concentric or eccentric load. RESULTS: Eccentric interval training specifically enhanced the peak power of positive anaerobic contractions (+28%), mitigated the strain on muscle's aerobic metabolism, and lowered hemodynamic stress during interval exercise, concomitant with a lowered contribution of positive work to the target output. Concentric training alone lowered blood glucose concentration during interval exercise and mitigated heart rate and blood lactate concentration during ramp exercise. Training-induced adjustments for lactate and positive peak power were independently correlated (p < 0.05, |r| > 0.7) with indices of metabolic and mechanical muscle stress during exercise. DISCUSSION: Task-specific improvements in strength and muscle's metabolic capacity were induced with eccentric interval exercise lowering cardiovascular risk factors, except for blood glucose concentration, possibly through altered neuromuscular coordination.


Asunto(s)
Sistema Cardiovascular , Ejercicio Físico , Metabolismo/fisiología , Contracción Muscular , Estrés Fisiológico , Femenino , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético , Músculos
18.
Am J Sports Med ; 47(13): 3080-3088, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31536372

RESUMEN

BACKGROUND: Muscle atrophy and fatty infiltration are limiting factors for successful rotator cuff (RC) repair. Quantitative data regarding these hallmarks of degenerative muscle changes after RC repair in humans are scarce. By utilizing a new application of the 6-point Dixon magnetic resonance imaging technology, 3-dimensional volume and fat fraction analysis of the whole RC muscle have become possible. PURPOSE: Quantitative analysis of atrophy and fatty infiltration of the supraspinatus muscle after healed and failed RC tendon-to-bone repair. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: Muscle volume and fat fraction were measured preoperatively and at 3 and 12 months postoperatively in 19 failed and 21 healed arthroscopic supraspinatus tendon repairs, with full muscle volume segmentation and magnetic resonance Dixon sequences. RESULTS: In both groups, the muscle volume initially decreased 3 months after RC repair by -3% in intact (P = .140) and -10% in failed repair (P = .004) but recovered between 3 and 12 months to 103% (P = .274) in intact and 92% (P = .040) in failed repairs when compared with the preoperative volume (difference of change between groups, preoperative to 12 month: P = .013). The supraspinatus muscle's fat fraction did not significantly change after successful repair (6.5% preoperative, 6.6% after 3 months, and 6.7% after 12 months; all nonsignificant). There was, however, a significant increase from 7.8% to 10.8% at 3 months (P = .014) and 11.4% at 12 months (P = .020) after failed repair (difference between groups at 3- and 12-month follow-up: P = .018 and P = .001, respectively). CONCLUSION: After successful arthroscopic repair, RC tendon tear-induced fatty infiltration can be almost stopped, and muscle atrophy can even be slightly reversed. In case of a failed repair, however, these changes are further pronounced during the first 3 postoperative months but seem to stabilize thereafter.


Asunto(s)
Adiposidad , Atrofia Muscular/etiología , Complicaciones Posoperatorias/etiología , Lesiones del Manguito de los Rotadores/cirugía , Manguito de los Rotadores/fisiología , Adulto , Anciano , Artroplastia , Artroscopía , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Atrofia Muscular/diagnóstico por imagen , Complicaciones Posoperatorias/diagnóstico por imagen , Periodo Posoperatorio , Estudios Prospectivos , Manguito de los Rotadores/diagnóstico por imagen , Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/complicaciones , Tendones/cirugía , Insuficiencia del Tratamiento
19.
Data Brief ; 25: 103999, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31463339

RESUMEN

Sarcolemma-based focal adhesions (costameres) are a central hub for the cytoskeletal anchoring of myofibrils and mechano-regulated signaling. Here we report the time course of alterations in focal adhesion-associated signaling and fiber composition in rat soleus muscle after Achilles tenotomy. The report includes data from tenotomized muscles and contralateral mock controls to expose whether muscle degeneration after tenotomy is due to the transection of the Achilles tendon, or circumjacent surgical manipulations of the tendon. With respect to the interpretation of the data regarding mechanistic implications of costamere-associated processes for surgical repair of the detached muscle-tendon complex the reader is referred to the accompanying research article 'Focal adhesion kinase coordinates costamere-related JNK signaling with muscle fiber transformation after Achilles tenotomy and tendon reconstruction' Ferrié et al., 2019.

20.
Orphanet J Rare Dis ; 14(1): 135, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186054

RESUMEN

BACKGROUND: Skeletal muscle wasting is a hallmark of Huntington's disease (HD). However, data on myocellular characteristics and myofiber remodeling in HD patients are scarce. We aimed at gaining insights into myocellular characteristics of HD patients as compared to healthy controls at rest and after a period of increased skeletal muscle turnover. METHODS: Myosin heavy chain (MyHC)-specific cross-sectional area, satellite cell content, myonuclear number, myonuclear domain, and muscle fiber type distribution were determined from vastus lateralis muscle biopsies at rest and after 26 weeks of endurance training in HD patients and healthy controls. RESULTS: At the beginning of the study, there were no differences in myocellular characteristics between HD patients and healthy controls. Satellite cell content per MyHC-1 fiber (P = 0.014) and per MyHC-1 myonucleus (P = 0.006) increased significantly in healthy controls during the endurance training intervention, whereas it remained constant in HD patients (P = 0.804 and P = 0.975 for satellite cell content per MyHC-1 fiber and myonucleus, respectively). All further variables were not altered during the training intervention in HD patients and healthy controls. CONCLUSIONS: Similar skeletal muscle characteristics between HD patients and healthy controls at baseline suggested similar potential for myofiber remodeling in response to exercise. However, the missing satellite cell response in MyHC-1 myofibers following endurance training in HD patients points to a potential dysregulation in the exercise-induced activation and/or proliferation of satellite cells. In the longer-term, impaired myonuclear turnover might be associated with the clinical observation of skeletal muscle wasting.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Estudios Transversales , Femenino , Humanos , Enfermedad de Huntington/metabolismo , Masculino , Persona de Mediana Edad , Cadenas Pesadas de Miosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...