Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(7): 1380-1390, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36991098

RESUMEN

Parallel to major changes in fatty acid and glucose metabolism, defect in branched-chain amino acid (BCAA) catabolism has also been recognized as a metabolic hallmark and potential therapeutic target for heart failure. However, BCAA catabolic enzymes are ubiquitously expressed in all cell types and a systemic BCAA catabolic defect is also manifested in metabolic disorder associated with obesity and diabetes. Therefore, it remains to be determined the cell-autonomous impact of BCAA catabolic defect in cardiomyocytes in intact hearts independent from its potential global effects. In this study, we developed two mouse models. One is cardiomyocyte and temporal-specific inactivation of the E1α subunit (BCKDHA-cKO) of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which blocks BCAA catabolism. Another model is cardiomyocyte specific inactivation of the BCKDH kinase (BCKDK-cKO), which promotes BCAA catabolism by constitutively activating BCKDH activity in adult cardiomyocytes. Functional and molecular characterizations showed E1α inactivation in cardiomyocytes was sufficient to induce loss of cardiac function, systolic chamber dilation and pathological transcriptome reprogramming. On the other hand, inactivation of BCKDK in intact heart does not have an impact on baseline cardiac function or cardiac dysfunction under pressure overload. Our results for the first time established the cardiomyocyte cell autonomous role of BCAA catabolism in cardiac physiology. These mouse lines will serve as valuable model systems to investigate the underlying mechanisms of BCAA catabolic defect induced heart failure and to provide potential insights for BCAA targeted therapy.


Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Ratones , Animales , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , Obesidad/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Aminoácidos de Cadena Ramificada/uso terapéutico
2.
Nat Commun ; 7: 10686, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26880110

RESUMEN

Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Diferenciación Celular/genética , Resistencia a la Insulina/genética , Grasa Intraabdominal/metabolismo , Canales Iónicos/metabolismo , Lipogénesis/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/metabolismo , Obesidad Mórbida/genética , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Adulto , Animales , Western Blotting , Proteínas de Unión al ADN/metabolismo , Epidídimo , Femenino , Técnica del Anticuerpo Fluorescente , Técnica de Clampeo de la Glucosa , Humanos , Grasa Intraabdominal/citología , Grasa Intraabdominal/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Obesidad Mórbida/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Proteína Desacopladora 1
3.
Mol Cell Biol ; 35(13): 2356-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25918248

RESUMEN

Studies in vitro suggest that mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) attenuates insulin signaling, but confirmation in vivo is lacking since Map4k4 knockout is lethal during embryogenesis. We thus generated mice with floxed Map4k4 alleles and a tamoxifen-inducible Cre/ERT2 recombinase under the control of the ubiquitin C promoter to induce whole-body Map4k4 deletion after these animals reached maturity. Tamoxifen administration to these mice induced Map4k4 deletion in all tissues examined, causing decreased fasting blood glucose concentrations and enhanced insulin signaling to AKT in adipose tissue and liver but not in skeletal muscle. Surprisingly, however, mice generated with a conditional Map4k4 deletion in adiponectin-positive adipocytes or in albumin-positive hepatocytes displayed no detectable metabolic phenotypes. Instead, mice with Map4k4 deleted in Myf5-positive tissues, including all skeletal muscles tested, were protected from obesity-induced glucose intolerance and insulin resistance. Remarkably, these mice also showed increased insulin sensitivity in adipose tissue but not skeletal muscle, similar to the metabolic phenotypes observed in inducible whole-body knockout mice. Taken together, these results indicate that (i) Map4k4 controls a pathway in Myf5-positive cells that suppresses whole-body insulin sensitivity and (ii) Map4k4 is a potential therapeutic target for improving glucose tolerance and insulin sensitivity in type 2 diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Eliminación de Gen , Insulina/metabolismo , Hígado/metabolismo , Obesidad/genética , Obesidad/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Glucemia/análisis , Glucosa/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Factor 5 Regulador Miogénico/análisis , Factor 5 Regulador Miogénico/metabolismo , Obesidad/sangre , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/metabolismo , Tamoxifeno/farmacología , Quinasa de Factor Nuclear kappa B
4.
Mol Cell Biol ; 33(4): 678-87, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23207904

RESUMEN

Myoblast differentiation into mature myotubes is a critical step in the development and repair of human skeletal muscle. Here we show that small interfering RNA (siRNA)-based silencing of the Ste20-like mitogen-activated protein 4 kinase 4 (Map4k4) in C2C12 myoblasts markedly enhances expression of myogenic differentiation genes, myoblast fusion, and myotube diameter. In contrast, adenovirus-mediated expression of native Map4k4 in C2C12 cells attenuates each of these processes, indicating that Map4k4 is a negative regulator of myogenic differentiation and hypertrophy. Expression of a Map4k4 kinase-inactive mutant enhances myotube formation, suggesting that the kinase activity of Map4k4 is essential for its inhibition of muscle differentiation. Map4k4 regulation of myogenesis is unlikely to be mediated by classic mitogen-activated protein kinase (MAPK) signaling pathways, because no significant difference in phosphorylation of extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK) is observed in Map4k4-silenced cells. Furthermore, silencing of these other MAPKs does not result in a hypertrophic myotube phenotype like that seen with Map4k4 depletion. Uniquely, Map4k4 silencing upregulates the expression of the myogenic regulatory factor Myf5, whose depletion inhibits myogenesis. Furthermore, Myf5 is required for enhancement of myotube formation in Map4k4-silenced cells, while Myf5 overexpression rescues Map4k4-mediated inhibition of myogenic differentiation. These results demonstrate that Map4k4 is a novel suppressor of skeletal muscle differentiation, acting through a Myf5-dependent mechanism.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Regulación hacia Arriba , Quinasa de Factor Nuclear kappa B
5.
J Biol Chem ; 286(25): 22195-202, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21521693

RESUMEN

The integration of metabolic signals required for the regulation of hepatic lipid homeostasis is complex. Previously, we showed that mice lacking expression of the mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) have increased fatty acid oxidation and are protected from the development of hepatic steatosis. Here, we show that leptin receptor-deficient (db/db) mice lacking MKP-1 are also resistant to the development of hepatic steatosis. Microarray analyses of livers from db/db mice lacking MKP-1 showed suppression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. We identified the fat-specific protein 27 (Fsp27), which promotes PPARγ-mediated hepatic steatosis, as repressed in livers of both db/db and high fat diet-fed mice lacking MKP-1. Hepatocytes from MKP-1-deficient mice exhibited reduced PPARγ-induced lipid droplet formation. Mechanistically, loss of MKP-1 inhibited PPARγ function by increasing MAPK-dependent phosphorylation on PPARγ at its inhibitory residue of serine 112. These results demonstrate that in addition to inhibiting hepatic fatty acid oxidation, MKP-1 promotes hepatic lipogenic gene expression through PPARγ. Hence, MKP-1 plays an important role in MAPK-mediated control of hepatic lipid homeostasis.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/deficiencia , Hígado Graso/genética , Hígado Graso/metabolismo , Proteínas/genética , Animales , Tamaño Corporal , Fosfatasa 1 de Especificidad Dual/metabolismo , Hígado Graso/patología , Hígado Graso/fisiopatología , Femenino , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/metabolismo , Fosforilación , Triglicéridos/metabolismo
6.
FASEB J ; 24(8): 2985-97, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20371627

RESUMEN

In skeletal muscle, the mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a critical negative regulator of the MAPKs. Since the MAPKs have been reported to be both positive and negative for myogenesis, the physiological role of MKP-1 in skeletal muscle repair and regeneration has remained unclear. Here, we show that MKP-1 plays an essential role in adult regenerative myogenesis. In a cardiotoxin-induced muscle injury model, lack of MKP-1 impaired muscle regeneration. In mdx mice, MKP-1 deficiency reduced body weight, muscle mass, and muscle fiber cross-sectional area. In addition, MKP-1-deficient muscles exhibit exacerbated myopathy accompanied by increased inflammation. Lack of MKP-1 compromised myoblast proliferation and induced precocious differentiation, phenotypes that were rescued by pharmacological inhibition of p38alpha/beta MAPK. MKP-1 coordinates both myoblast proliferation and differentiation. Mechanistically, MyoD bound to the MKP-1 promoter and activated MKP-1 expression in proliferating myoblasts. Later, during myogenesis, MyoD uncoupled from the MKP-1 promoter leading to the down-regulation of MKP-1 and facilitation of promyogenic p38alpha/beta MAPK signaling. Hence, MKP-1 plays a critical role in muscle stem cells and in the immune response to coordinate muscle repair and regeneration.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/deficiencia , Músculo Esquelético/fisiología , Distrofias Musculares/etiología , Regeneración , Animales , Fosfatasa 1 de Especificidad Dual/genética , Inmunidad , Ratones , Ratones Endogámicos mdx , Desarrollo de Músculos , Distrofias Musculares/fisiopatología , Proteína MioD , Mioblastos/citología , Regiones Promotoras Genéticas , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos
7.
Aging (Albany NY) ; 2(3): 170-6, 2010 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-20375469

RESUMEN

Sarcopenia, which is defined by the loss of skeletal muscle mass, predisposes skeletal muscle to metabolic dysfunction which can precipitate metabolic disease. Similarly, overnutrition, which is a major health problem in modern society, also causes metabolic dysfunction in skeletal muscle and predisposition to metabolic disease. It is now the prevailing view that both aging and overnutrition negatively impact skeletal muscle metabolic homeostasis through deleterious effects on the mitochondria. Accordingly, interplay between the molecular pathways implicated in aging and overnutrition that induce mitochondrial dysfunction are apparent. Recent work from our laboratory has uncovered the stress-responsive mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) as a new player in the regulation of metabolic homeostasis in skeletal muscle and mitochondrial dysfunction caused by overnutrition. These observations raise the intriguing possibility that MKP-1 may function as a common target in the convergence between sarcopenia and overnutrition in a pathophysiological pathway that leads to a loss of skeletal muscle mitochondrial function. With the increasing aging population it will become more important to understand how MKP-1, and possibly other phosphatases, operate at the nexus between sarcopenia and metabolic disease.


Asunto(s)
Envejecimiento/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Hipernutrición/enzimología , Sarcopenia/enzimología , Humanos , Sarcopenia/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...