Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 662: 76-83, 2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37099813

RESUMEN

Human induced pluripotent stem cells (hiPSCs) genetically depleted of human leucocyte antigen (HLA) class I expression can bypass T cell alloimmunity and thus serve as a one-for-all source for cell therapies. However, these same therapies may elicit rejection by natural killer (NK) cells, since HLA class I molecules serve as inhibitory ligands of NK cells. Here, we focused on testing the capacity of endogenously developed human NK cells in humanized mice (hu-mice) using MTSRG and NSG-SGM3 strains to assay the tolerance of HLA-edited iPSC-derived cells. High NK cell reconstitution was achieved with the engraftment of cord blood-derived human hematopoietic stem cells (hHSCs) followed by the administration of human interleukin-15 (hIL-15) and IL-15 receptor alpha (hIL-15Rα). Such "hu-NK mice" rejected HLA class I-null hiPSC-derived hematopoietic progenitor cells (HPCs), megakaryocytes and T cells, but not HLA-A/B-knockout, HLA-C expressing HPCs. To our knowledge, this study is the first to recapitulate the potent endogenous NK cell response to non-tumor HLA class I-downregulated cells in vivo. Our hu-NK mouse models are suitable for the non-clinical evaluation of HLA-edited cells and will contribute to the development of universal off-the-shelf regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Células Asesinas Naturales , Antígenos de Histocompatibilidad Clase I/metabolismo , Linfocitos T , Antígenos HLA/metabolismo
2.
Front Immunol ; 12: 662360, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897711

RESUMEN

Human induced pluripotent stem cells (iPSCs) can be limitlessly expanded and differentiated into almost all cell types. Moreover, they are amenable to gene manipulation and, because they are established from somatic cells, can be established from essentially any person. Based on these characteristics, iPSCs have been extensively studied as cell sources for tissue grafts, blood transfusions and cancer immunotherapies, and related clinical trials have started. From an immune-matching perspective, autologous iPSCs are perfectly compatible in principle, but also require a prolonged time for reaching the final products, have high cost, and person-to-person variation hindering their common use. Therefore, certified iPSCs with reduced immunogenicity are expected to become off-the-shelf sources, such as those made from human leukocyte antigen (HLA)-homozygous individuals or genetically modified for HLA depletion. Preclinical tests using immunodeficient mice reconstituted with a human immune system (HIS) serve as an important tool to assess the human alloresponse against iPSC-derived cells. Especially, HIS mice reconstituted with not only human T cells but also human natural killer (NK) cells are considered crucial. NK cells attack so-called "missing self" cells that do not express self HLA class I, which include HLA-homozygous cells that express only one allele type and HLA-depleted cells. However, conventional HIS mice lack enough reconstituted human NK cells for these tests. Several measures have been developed to overcome this issue including the administration of cytokines that enhance NK cell expansion, such as IL-2 and IL-15, the administration of vectors that express those cytokines, and genetic manipulation to express the cytokines or to enhance the reconstitution of human myeloid cells that express IL15R-alpha. Using such HIS mice with enhanced human NK cell reconstitution, alloresponses against HLA-homozygous and HLA-depleted cells have been studied. However, most studies used HLA-downregulated tumor cells as the target cells and tested in vitro after purifying human cells from HIS mice. In this review, we give an overview of the current state of iPSCs in cell therapies, strategies to lessen their immunogenic potential, and then expound on the development of HIS mice with reconstituted NK cells, followed by their utilization in evaluating future universal HLA-engineered iPSC-derived cells.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Pluripotentes Inducidas/inmunología , Células Asesinas Naturales/inmunología , Animales , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Citotoxicidad Inmunológica , Antígenos HLA/inmunología , Humanos , Ratones , Ratones Transgénicos , Linfocitos T/inmunología
3.
Stem Cell Reports ; 14(1): 49-59, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31883921

RESUMEN

The ex vivo production of platelets depleted of human leukocyte antigen class I (HLA-I) could serve as a universal measure to overcome platelet transfusion refractoriness caused by HLA-I incompatibility. Here, we developed human induced pluripotent cell-derived HLA-I-deficient platelets (HLA-KO iPLATs) in a clinically applicable imMKCL system by genetic manipulation and assessed their immunogenic properties including natural killer (NK) cells, which reject HLA-I downregulated cells. HLA-KO iPLATs were deficient for all HLA-I but did not elicit a cytotoxic response by NK cells in vitro and showed circulation equal to wild-type iPLATs upon transfusion in our newly established Hu-NK-MSTRG mice reconstituted with human NK cells. Additionally, HLA-KO iPLATs successfully circulated in an alloimmune platelet transfusion refractoriness model of Hu-NK-MISTRG mice. Mechanistically, the lack of NK cell-activating ligands on platelets may be responsible for evading the NK cell response. This study revealed the unique non-immunogenic property of platelets and provides a proof of concept for the clinical application of HLA-KO iPLATs.


Asunto(s)
Plaquetas/citología , Plaquetas/metabolismo , Diferenciación Celular , Antígenos de Histocompatibilidad Clase I/inmunología , Células Madre Pluripotentes Inducidas/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/inmunología , Técnicas de Inactivación de Genes , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Microglobulina beta-2/deficiencia , Microglobulina beta-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...