Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(13): 14771-14780, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585059

RESUMEN

The present work describes a complete and reversible transformation of DNA's properties allowing solubilization in organic solvents and subsequent chemical modifications that are otherwise not possible in an aqueous medium. Organo-soluble DNA (osDNA) moieties are generated by covalently linking a dsDNA fragment to a polyether moiety with a built-in mechanism, rendering the process perfectly reversible and fully controllable. The precise removal of the polyether moiety frees up the initial DNA fragment, unaltered, both in sequence and nature. The solubility of osDNA was confirmed in six organic solvents of decreasing polarity and six types of osDNAs. As a proof of concept, in the context of DNA-encoded library (DEL) technology, an amidation reaction was successfully performed on osDNA in 100% DMSO. The development of osDNA opens up entirely new avenues for any DNA applications that could benefit from working in nonaqueous solutions, including chemical transformations.

2.
Brain ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462574

RESUMEN

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease (AD). Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early AD. The existence of a cell-autonomous mechanism linking AD pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in AD.

3.
ACS Chem Biol ; 19(1): 37-47, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079390

RESUMEN

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the accumulation of ß-amyloid (Aß), C99, and Tau in vulnerable areas of the brain. Despite extensive research, current strategies to lower Aß levels have shown limited efficacy in slowing the cognitive decline associated with AD. Recent findings suggest that C99 may also play a crucial role in the pathogenesis of AD. Our laboratory has discovered that CK1γ2 phosphorylates Presenilin 1 at the γ-secretase complex, leading to decreased C99 and Aß levels. Thus, CK1γ2 activation appears as a promising therapeutic target to lower both C99 and Aß levels. In this study, we demonstrate that CK1γ2 is inhibited by intramolecular autophosphorylation and describe a high-throughput screen designed to identify inhibitors of CK1γ2 autophosphorylation. We hypothesize that these inhibitors could lead to CK1γ2 activation and increased PS1-Ser367 phosphorylation, ultimately reducing C99 and Aß levels. Using cultured cells, we investigated the impact of these compounds on C99 and Aß concentrations and confirmed that CK1γ2 activation effectively reduced their levels. Our results provide proof of concept that CK1γ2 is an attractive therapeutic target for AD. Future studies should focus on the identification of specific compounds that can inhibit CK1γ2 autophosphorylation and evaluate their efficacy in preclinical models of AD. These studies will pave the way for the development of novel therapeutics for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/metabolismo
4.
iScience ; 26(9): 107573, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664608

RESUMEN

High-power screening (HPS) technologies, such as DNA-encoded library (DEL) technology, could exponentially increase the dimensions of the chemical space accessible for drug discovery. The intrinsic fragile nature of DNA is associated with cumbersome limitations and DNA durability (e.g., depurination, loss of phosphate groups, adduct formation) is compromised in numerous organic chemistry conditions that require empirical testing. An atlas of reaction conditions (temperature, pH, solvent/buffer, ligands, oxidizing reagents, catalysts, scavengers in function of time) that have been systematically tested in multiple combinations, indicates precisely limits useful for DEL construction. More importantly, this approach could be used broadly to effectively evaluate DNA-compatibility of any novel on-DNA chemical reaction, and it is compatible with different molecular methodologies. This atlas and the general approach presented, by allowing novel reaction conditions to be performed in presence of DNA, should greatly help in expanding the DEL chemical space as well as any field involving DNA durability.

5.
Biol Psychiatry ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37579933

RESUMEN

BACKGROUND: Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS: Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

6.
bioRxiv ; 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36945487

RESUMEN

BACKGROUND: Highly palatable food triggers behavioral alterations reminiscent of those induced by addictive drugs. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral effects and dendritic spine modifications in the NAc. We compared the translating mRNA in NAc neurons identified by the type of dopamine receptors they express, depending on the type of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn (Neurochondrin). RESULTS: Operant conditioning for highly palatable food increases motivation for food even in well-fed mice. In control mice, free access to regular or highly palatable food results in increased weight as compared to regular food only. Highly palatable food increases spine density in the NAc. In animals trained for highly palatable food, translating mRNAs are modified in NAc dopamine D2-receptor-expressing neurons, mostly corresponding to striatal projection neurons, but not in those expressing D1-receptors. Knock-out of Ncdn, an abundant down-regulated gene, opposes the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting down-regulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of mRNA alterations D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

7.
Chemistry ; 29(11): e202203037, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36653313

RESUMEN

The DNA-encoded library (DEL) technology represents a revolutionary drug-discovery tool with unprecedented screening power originating from the association of combinatorial chemistry and DNA barcoding. The chemical diversity of DELs and its chemical space will be further expanded as new DNA-compatible reactions are introduced. This work introduces the use of DOS in the context of on-DNA peptidomimetics. Wittig olefination of aspartic acid-derived on-DNA Wittig ylide, combined with a broad substrate scope of aldehydes, led to formation of on-DNA α ${\alpha }$ , ß ${\beta }$ -unsaturated ketones. The synthesis of on-DNA multi-peptidyl-ylides was performed by incorporating sequential amino acids onto a monomeric ylide. Di-, tri- and tetrameric peptidyl-ylides were validated for Wittig olefination and led to on-DNA α ${\alpha }$ , ß ${\beta }$ -unsaturated-based peptidomimetics, an important class of intermediates. One on-DNA aryl Wittig ylide was also developed and applied to Wittig olefination for synthesis of on-DNA chalcone-based molecules. Furthermore, DOS was used successfully with electron-deficient peptidomimetics and led to the development of different heterocyclic cores containing on-DNA peptidomimetics.


Asunto(s)
Peptidomiméticos , Aldehídos/química , Cetonas
8.
Front Mol Biosci ; 9: 916232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090057

RESUMEN

Protein kinases play a vital role in biology and deregulation of kinases is implicated in numerous diseases ranging from cancer to neurodegenerative diseases, making them a major target class for the pharmaceutical industry. However, the high degree of conservation that exists between ATP-binding sites among kinases makes it difficult for current inhibitors to be highly specific. In the context of neurodegeneration, several groups including ours, have linked different kinases such as CK1 and Alzheimer's disease for example. Strictly CK1-isoform specific regulators do not exist and known CK1 inhibitors are inhibiting the enzymatic activity, targeting the ATP-binding site. Here we review compounds known to target CK1, as well as other inhibitory types that could benefit CK1. We introduce the DNA-encoded library (DEL) technology that might represent an interesting approach to uncover allosteric modulators instead of ATP competitors. Such a strategy, taking into account known allosteric inhibitors and mechanisms, might help designing modulators that are more specific towards a specific kinase, and in the case of CK1, toward specific isoforms.

9.
Front Chem ; 10: 894603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774858

RESUMEN

An efficient method for the C-C bond formation via water soluble Na2PdCl4/sSPhos mediated Suzuki-Miyaura cross-coupling reaction of DNA-conjugated aryl iodide with (het)aryl boronic acids has been developed. This reaction proceeds at 37°C in water and acetonitrile (4:1) system. We also demonstrated that numerous aromatic and heteroaromatic boronic acids of different electronic natures, and harboring various functional groups, were highly compatible providing the desired coupling products in good to excellent yields. This DNA-compatible Suzuki-Miyaura cross-coupling reaction has strong potential to construct DNA-Encoded Libraries (DELs) in the context of drug discovery.

10.
Trends Pharmacol Sci ; 43(1): 4-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782164

RESUMEN

The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Bibliotecas de Moléculas Pequeñas , ADN , Descubrimiento de Drogas , Industria Farmacéutica , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología
11.
J Exp Med ; 218(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34156424

RESUMEN

Biochemical, pathogenic, and human genetic data confirm that GSAP (γ-secretase activating protein), a selective γ-secretase modulatory protein, plays important roles in Alzheimer's disease (AD) and Down's syndrome. However, the molecular mechanism(s) underlying GSAP-dependent pathogenesis remains largely elusive. Here, through unbiased proteomics and single-nuclei RNAseq, we identified that GSAP regulates multiple biological pathways, including protein phosphorylation, trafficking, lipid metabolism, and mitochondrial function. We demonstrated that GSAP physically interacts with the Fe65-APP complex to regulate APP trafficking/partitioning. GSAP is enriched in the mitochondria-associated membrane (MAM) and regulates lipid homeostasis through the amyloidogenic processing of APP. GSAP deletion generates a lipid environment unfavorable for AD pathogenesis, leading to improved mitochondrial function and the rescue of cognitive deficits in an AD mouse model. Finally, we identified a novel GSAP single-nucleotide polymorphism that regulates its brain transcript level and is associated with an increased AD risk. Together, our findings indicate that GSAP impairs mitochondrial function through its MAM localization and that lowering GSAP expression reduces pathological effects associated with AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Homeostasis , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Proteínas/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Prueba de Campo Abierto , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas/genética , Transcripción Genética
12.
Adv Pharmacol ; 90: 1-18, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706929

RESUMEN

Paul Greengard's name is and will remain profoundly associated with Neuroscience, with brain signaling and chemical transmission, with Parkinson's and Alzheimer's diseases, with fundamental discoveries and solving paradoxes, but much less perhaps with drug discovery. This should not be mistaken as disdain. Paul in fact did contemplate developing therapeutic avenues to actually treat brain diseases much more than it is known, perhaps during his entire career, and certainly over the last two decades. As a matter of fact, he did more than contemplate it, he directly and indirectly contributed in the development of treatments for neurological diseases and disorders. Paul's impact on fundamental aspects of the brain has been so gargantuan that any other aspect of Paul's life will have difficulty to shine. It is precisely this less known aspect of Paul's career that will be covered in this review. We will discover how Paul very early on moved away from biophysics to avoid working on nuclear weapons and instead started his career in the pharmacological spheres of a large pharmaceutical company.


Asunto(s)
Encéfalo/fisiología , Animales , Encefalopatías/patología , Aprobación de Drogas , Desarrollo de Medicamentos , Humanos , Terapia Molecular Dirigida , Armas
13.
Neuron ; 107(5): 821-835.e12, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603655

RESUMEN

A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neuron-type-specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of cellular taxonomy at the molecular level for neurons vulnerable and resistant in AD, identify specific genes and pathways associated with AD neuropathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes associated with axonal remodeling, and affected by amyloid accumulation and aging. We have made all cell-type-specific profiles and functional networks available at http://alz.princeton.edu. Overall, our study provides a molecular framework for understanding the complex interplay between Aß, aging, and neurodegeneration within the most vulnerable neurons in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Perfilación de la Expresión Génica/métodos , Aprendizaje Automático , Neuronas/patología , Transcriptoma , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Animales , Redes Reguladoras de Genes/fisiología , Humanos , Ratones
14.
Mol Psychiatry ; 25(12): 3322-3336, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31363163

RESUMEN

The cognitive mechanisms underlying attention-deficit hyperactivity disorder (ADHD), a highly heritable disorder with an array of candidate genes and unclear genetic architecture, remain poorly understood. We previously demonstrated that mice overexpressing CK1δ (CK1δ OE) in the forebrain show hyperactivity and ADHD-like pharmacological responses to D-amphetamine. Here, we demonstrate that CK1δ OE mice exhibit impaired visual attention and a lack of D-amphetamine-induced place preference, indicating a disruption of the dopamine-dependent reward pathway. We also demonstrate the presence of abnormalities in the frontostriatal circuitry, differences in synaptic ultra-structures by electron microscopy, as well as electrophysiological perturbations of both glutamatergic and GABAergic transmission, as observed by altered frequency and amplitude of mEPSCs and mIPSCs. Furthermore, gene expression profiling by next-generation sequencing alone, or in combination with bacTRAP technology to study specifically Drd1a versus Drd2 medium spiny neurons, revealed that developmental CK1δ OE alters transcriptional homeostasis in the striatum, including specific alterations in Drd1a versus Drd2 neurons. These results led us to perform a fine molecular characterization of targeted gene networks and pathway analysis. Importantly, a large fraction of 92 genes identified by GWAS studies as associated with ADHD in humans are significantly altered in our mouse model. The multiple abnormalities described here might be responsible for synaptic alterations and lead to complex behavioral abnormalities. Collectively, CK1δ OE mice share characteristics typically associated with ADHD and should represent a valuable model to investigate the disease in vivo.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Quinasa Idelta de la Caseína/genética , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Cuerpo Estriado , Dopamina , Ratones , Neuronas , Receptores de Dopamina D2/genética
15.
J Neurosci ; 39(26): 5234-5242, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028115

RESUMEN

Hypofunction of NMDA receptors has been considered a possible cause for the pathophysiology of schizophrenia. More recently, indirect ways to regulate NMDA that would be less disruptive have been proposed and metabotropic glutamate receptor subtype 5 (mGluR5) represents one such candidate. To characterize the cell populations involved, we demonstrated here that knock-out (KO) of mGluR5 in cholinergic, but not glutamatergic or parvalbumin (PV)-positive GABAergic, neurons reduced prepulse inhibition of the startle response (PPI) and enhanced sensitivity to MK801-induced locomotor activity. Inhibition of cholinergic neurons in the medial septum by DREADD (designer receptors exclusively activated by designer drugs) resulted in reduced PPI further demonstrating the importance of these neurons in sensorimotor gating. Volume imaging and quantification were used to compare PV and cholinergic cell distribution, density, and total cell counts in the different cell-type-specific KO lines. Electrophysiological studies showed reduced NMDA receptor-mediated currents in cholinergic neurons of the medial septum in mGluR5 KO mice. These results obtained from male and female mice indicate that cholinergic neurons in the medial septum represent a key cell type involved in sensorimotor gating and are relevant to pathologies associated with disrupted sensorimotor gating such as schizophrenia.SIGNIFICANCE STATEMENT The mechanistic complexity underlying psychiatric disorders remains a major challenge that is hindering the drug discovery process. Here, we generated genetically modified mouse lines to better characterize the involvement of the receptor mGluR5 in the fine-tuning of NMDA receptors, specifically in the context of sensorimotor gating. We evaluated the importance of knocking-out mGluR5 in three different cell types in two brain regions and performed different sets of experiments including behavioral testing and electrophysiological recordings. We demonstrated that cholinergic neurons in the medial septum represent a key cell-type involved in sensorimotor gating. We are proposing that pathologies associated with disrupted sensorimotor gating, such as with schizophrenia, could benefit from further evaluating strategies to modulate specifically cholinergic neurons in the medial septum.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Actividad Motora/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Filtrado Sensorial/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Técnicas de Placa-Clamp , Inhibición Prepulso/efectos de los fármacos , Inhibición Prepulso/fisiología , Receptor del Glutamato Metabotropico 5/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Filtrado Sensorial/efectos de los fármacos
16.
J Neurosci ; 37(49): 11930-11946, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29097596

RESUMEN

We have previously shown that casein kinase 2 (CK2) negatively regulates dopamine D1 and adenosine A2A receptor signaling in the striatum. Ablation of CK2 in D1 receptor-positive striatal neurons caused enhanced locomotion and exploration at baseline, whereas CK2 ablation in D2 receptor-positive neurons caused increased locomotion after treatment with A2A antagonist, caffeine. Because both, D1 and A2A receptors, play major roles in the cellular responses to l-DOPA in the striatum, these findings prompted us to examine the impact of CK2 ablation on the effects of l-DOPA treatment in the unilateral 6-OHDA lesioned mouse model of Parkinson's disease. We report here that knock-out of CK2 in striatonigral neurons reduces the severity of l-DOPA-induced dyskinesia (LID), a finding that correlates with lowered pERK but unchanged pPKA substrate levels in D1 medium spiny neurons as well as in cholinergic interneurons. In contrast, lack of CK2 in striatopallidal neurons enhances LID and ERK phosphorylation. Coadministration of caffeine with a low dose of l-DOPA reduces dyskinesia in animals with striatopallidal knock-out to wild-type levels, suggesting a dependence on adenosine receptor activity. We also detect reduced Golf levels in the striatonigral but not in the striatopallidal knock-out in response to l-DOPA treatment.Our work shows, in a rodent model of PD, that treatment-induced dyskinesia and striatal ERK activation are bidirectionally modulated by ablating CK2 in D1- or D2-positive projection neurons, in male and female mice. The results reveal that CK2 regulates signaling events critical to LID in each of the two main populations of striatal neurons.SIGNIFICANCE STATEMENT To date, l-DOPA is the most effective treatment for PD. Over time, however, its efficacy decreases, and side effects including l-DOPA-induced dyskinesia (LID) increase, affecting up to 78% of patients within 10 years of therapy (Hauser et al., 2007). It is understood that supersensitivity of the striatonigral pathway underlies LID, however, D2 agonists were also shown to induce LID (Bezard et al., 2001; Delfino et al., 2004). Our work implicates a novel player in the expression of LID, the kinase CK2: knock-out of CK2 in striatonigral and striatopallidal neurons has opposing effects on LID. The bidirectional modulation of dyskinesia reveals a central role for CK2 in striatal physiology and indicates that both pathways contribute to LID.


Asunto(s)
Quinasa de la Caseína II/fisiología , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Receptores de Dopamina D1/biosíntesis , Receptores de Dopamina D2/biosíntesis , Animales , Quinasa de la Caseína II/deficiencia , Cuerpo Estriado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Discinesia Inducida por Medicamentos/genética , Femenino , Expresión Génica , Levodopa/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genética
17.
Proc Natl Acad Sci U S A ; 114(27): 7148-7153, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28533369

RESUMEN

Presenilin 1 (PS1), the catalytic subunit of the γ-secretase complex, cleaves ßCTF to produce Aß. We have shown that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 decreases Aß levels by increasing ßCTF degradation through autophagy. Here, we report the molecular mechanism by which PS1 modulates ßCTF degradation. We show that PS1 phosphorylated at Ser367, but not nonphosphorylated PS1, interacts with Annexin A2, which, in turn, interacts with the lysosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autophagosomal SNARE Syntaxin 17 to modulate the fusion of autophagosomes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an antiamyloidogenic function, promoting autophagosome-lysosome fusion and increasing ßCTF degradation. Drugs designed to increase the level of PS1 phosphorylated at Ser367 should be useful in the treatment of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/genética , Autofagosomas/metabolismo , Lisosomas/metabolismo , Presenilina-1/genética , Animales , Anexina A2/metabolismo , Autofagia/fisiología , Encéfalo/metabolismo , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Neuroblastoma/metabolismo , Neuronas/metabolismo , Fagosomas/metabolismo , Fosforilación , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Transducción de Señal
18.
Proc Natl Acad Sci U S A ; 114(27): 7142-7147, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28533411

RESUMEN

Alzheimer's disease (AD) is characterized by accumulation of the ß-amyloid peptide (Aß), which is generated through sequential proteolysis of the amyloid precursor protein (APP), first by the action of ß-secretase, generating the ß-C-terminal fragment (ßCTF), and then by the Presenilin 1 (PS1) enzyme in the γ-secretase complex, generating Aß. γ-Secretase is an intramembranous protein complex composed of Aph1, Pen2, Nicastrin, and Presenilin 1. Although it has a central role in the pathogenesis of AD, knowledge of the mechanisms that regulate PS1 function is limited. Here, we show that phosphorylation of PS1 at Ser367 does not affect γ-secretase activity, but has a dramatic effect on Aß levels in vivo. We identified CK1γ2 as the endogenous kinase responsible for the phosphorylation of PS1 at Ser367. Inhibition of CK1γ leads to a decrease in PS1 Ser367 phosphorylation and an increase in Aß levels in cultured cells. Transgenic mice in which Ser367 of PS1 was mutated to Ala, show dramatic increases in Aß peptide and in ßCTF levels in vivo. Finally, we show that this mutation impairs the autophagic degradation of ßCTF, resulting in its accumulation and increased levels of Aß peptide and plaque load in the brain. Our results demonstrate that PS1 regulates Aß levels by a unique bifunctional mechanism. In addition to its known role as the catalytic subunit of the γ-secretase complex, selective phosphorylation of PS1 on Ser367 also decreases Aß levels by increasing ßCTF degradation through autophagy. Elucidation of the mechanism by which PS1 regulates ßCTF degradation may aid in the development of potential therapies for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Autofagia , Encéfalo/metabolismo , Línea Celular Tumoral , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Fosforilación , Presenilina-1/metabolismo , Dominios Proteicos , Serina/química , Resultado del Tratamiento
19.
Proc Natl Acad Sci U S A ; 114(6): 1389-1394, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115709

RESUMEN

Neurotoxic amyloid-ß peptides (Aß) are major drivers of Alzheimer's disease (AD) and are formed by sequential cleavage of the amyloid precursor protein (APP) by ß-secretase (BACE) and γ-secretase. Our previous study showed that the anticancer drug Gleevec lowers Aß levels through indirect inhibition of γ-secretase activity. Here we report that Gleevec also achieves its Aß-lowering effects through an additional cellular mechanism. It renders APP less susceptible to proteolysis by BACE without inhibiting BACE enzymatic activity or the processing of other BACE substrates. This effect closely mimics the phenotype of APP A673T, a recently discovered mutation that protects carriers against AD and age-related cognitive decline. In addition, Gleevec induces formation of a specific set of APP C-terminal fragments, also observed in cells expressing the APP protective mutation and in cells exposed to a conventional BACE inhibitor. These Gleevec phenotypes require an intracellular acidic pH and are independent of tyrosine kinase inhibition, given that a related compound lacking tyrosine kinase inhibitory activity, DV2-103, exerts similar effects on APP metabolism. In addition, DV2-103 accumulates at high concentrations in the rodent brain, where it rapidly lowers Aß levels. This study suggests that long-term treatment with drugs that indirectly modulate BACE processing of APP but spare other BACE substrates and achieve therapeutic concentrations in the brain might be effective in preventing or delaying the onset of AD and could be safer than nonselective BACE inhibitor drugs.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/efectos de los fármacos , Mesilato de Imatinib/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis/efectos de los fármacos
20.
J Alzheimers Dis ; 54(4): 1593-1605, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27589520

RESUMEN

Proteolytic cleavage of the amyloid-ß protein precursor (AßPP) by secretases leads to extracellular release of amyloid-ß (Aß) peptides. Increased production of Aß42 over Aß40 and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifying products of the 'human chemical exposome' (HCE) able to induce Aß42 production may be a key to understanding some of the initiating causes of AD and to generate non-genetic, chemically-induced AD animal models. A cell model was used to screen HCE libraries for Aß42 inducers. Out of 3500+ compounds, six triazine herbicides were found that induced a ß- and γ-secretases-dependent, 2-10 fold increase in the production of extracellular Aß42 in various cell lines, primary neuronal cells, and neurons differentiated from human-induced pluripotent stem cells (iPSCs). Immunoprecipitation/mass spectrometry analyses show enhanced production of Aß peptides cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and lower, a characteristic of AD. Neurons derived from iPSCs obtained from a familial AD (FAD) patient (AßPP K724N) produced more Aß42 versus Aß40 than neurons derived from healthy controls iPSCs (AßPP WT). Triazines enhanced Aß42 production in both control and AD iPSCs-derived neurons. Triazines also shifted the cleavage pattern of alcadeinα, another γ-secretase substrate, suggesting a direct effect of triazines on γ-secretase activity. In conclusion, several widely used triazines enhance the production of toxic, aggregation prone Aß42/Aß43 amyloids, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in late-onset AD.


Asunto(s)
Péptidos beta-Amiloides/biosíntesis , Herbicidas/química , Herbicidas/farmacología , Fragmentos de Péptidos/biosíntesis , Triazinas/química , Triazinas/farmacología , Adulto , Péptidos beta-Amiloides/agonistas , Animales , Células CHO , Línea Celular Tumoral , Células Cultivadas , Cricetinae , Cricetulus , Femenino , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Fragmentos de Péptidos/agonistas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...