Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 8(8): 7948-57, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25090034

RESUMEN

We link the extent of Pb for Cd cation exchange reactions in PbS colloidal quantum dots (QDs) to their surface chemistry. Using PbS QDs with either a full or a partial surface coverage by excess Pb, we demonstrate the central role played by vacant cation sites on the QD surface. They facilitate the adsorption of cations from solution, and they act as a source of vacancies needed for the transport of cations through the crystal lattice. This model explains our finding that the cation exchange reaction runs to completion when using a low Cd excess in the exchange bath, while it is impeded by a high Cd excess. Whereas in the latter case, the QD surface is poisoned by surface Cd, the former conditions provide the mixture of surface Cd and vacant surface sites the exchange reaction needs to proceed. This understanding provides a missing link needed to build a unifying mechanistic picture of cation exchange reactions at nanocrystals.

2.
Nanotechnology ; 25(17): 175302, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24722007

RESUMEN

The micropatterning of layers of colloidal quantum dots (QDs) stabilized by inorganic ligands is demonstrated using PbS core and CdSe/CdS core/shell QDs. A layer-by-layer approach is used to assemble the QD films, where each cycle involves the deposition of a QD layer by dip-coating, and the replacement of the native organic ligands by inorganic moieties, such as OH(-) and S(2-), followed by a thorough cleaning of the resulting film. This results in a smooth and crack-free QD film on which a photoresist can be spun. The micropatterns are defined by a positive photoresist, followed by the removal of uncovered QDs by selective wet etching with an HCl/H3PO4 mixture. The resulting patterns can have submicron feature dimensions, limited by the resolution of the lithographic process, and can be formed on planar and 3D substrates. It is shown that the photolithography and wet etching steps have little effect on the photoluminescence quantum yield of CdSe/CdS QDs. Compared with the unpatterned CdSe/CdS QD film, only a 10% degradation in the quantum yield is observed. These results demonstrate the feasibility of the proposed micropatterning method to implement the large-scale device integration of colloidal quantum dots.

3.
Dalton Trans ; 42(35): 12654-61, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23657539

RESUMEN

We describe the synthesis of metal selenide nanocrystals, including CdSe, ZnSe, CuInSe2 and Cu2(Zn,Sn)Se4, by the hot injection of selenium powder dispersed in a carrier solvent. Since this results in a fast and high yield nanocrystal formation, we argue that the approach is well suited for the low cost, large volume production of nanocrystals.

4.
ACS Nano ; 7(2): 987-93, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23297750

RESUMEN

The absorption cross section of colloidal quantum dots in close-packed monolayers shows a 4 (CdSe) to 5-fold (PbS) enhancement compared to quantum dots in a dilute dispersion. Quantitative agreement is demonstrated between the value and the size dependence of the enhancement and theoretical model predictions based on dipolar coupling between neighboring quantum dots. This collective optical behavior offers a new degree of freedom in the custom design of optical properties for electro-optical devices.


Asunto(s)
Compuestos de Cadmio/química , Plomo/química , Puntos Cuánticos , Compuestos de Selenio/química , Sulfuros/química , Absorción , Coloides , Nanopartículas/química , Tamaño de la Partícula
5.
Nanotechnology ; 23(40): 405604, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22990089

RESUMEN

We investigate colloidal Fe(3)O(4) nanocrystals as a catalyst system for carbon nanotube (CNT) growth that allows for decoupling the CNT growth step from the catalyst shaping and activation step. The system consists of 6.4 nm Fe(3)O(4) nanocrystals synthesized using a solution-based thermal decomposition reaction and, subsequently, transferred as hexagonally ordered Langmuir-Blodgett (LB) monolayers on TiN substrates. We demonstrate for the first time aligned CNT growth from LB deposited nanocrystals on a metallic underlayer. The hexagonally ordered monolayers of catalyst particles show promising stability up to the CNT growth temperature. In situ TEM heating experiments were performed to find this onset of particle deformation and showed stability of the nanoparticles up to 600 °C. The particle coalescence at high temperatures was also evidenced by the increasing CNT diameter, from 9.5 nm at 580 °C to 16 nm at 630 °C. By choosing to work at temperatures below the onset particle coalescence temperature, equivalent CNT diameters were obtained under different catalyst activation and growth conditions. The high stability of the catalyst on the metallic underlayer enables us to study CNT growth kinetics independently of the catalyst shaping step. This work opens a route towards combining growth studies with an electrical evaluation of the CNT growth as the TiN can be used as the bottom contact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...