Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Pharm ; 20(12): 6197-6212, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37955627

RESUMEN

Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs. As a result, the development of a formulation resulting in robust performance that is not sensitive to the exposed gastric pH levels is of crucial importance. The dynamic intestinal absorption MODel (Diamod), an advanced in vitro gastrointestinal transfer tool that allows to study the gastrointestinal dissolution and interconnected permeation of drugs, was selected as an in vitro tool for the formulation optimization activities given its promising predictive capacity and its capability to generate insights into the mechanisms driving formulation performance. Different pH-modifiers were screened for their potential to mitigate the pH-effect by decreasing the microenvironmental pH at the dissolution surface. Finally, an optimized formulation containing a clinically relevant dose of the drug and a functional amount of the selected pH-modifier was evaluated for its performance in the Diamod. This monolayer tablet formulation resulted in rapid gastric dissolution and supersaturation, inducing adequate intestinal supersaturation and permeation of compound X, irrespective of the gastric acidity level in the stomach. In conclusion, this study describes the holistic biopharmaceutics approach driving the development of a patient-centric formulation of compound X.


Asunto(s)
Absorción Intestinal , Atención Dirigida al Paciente , Humanos , Animales , Perros , Composición de Medicamentos , Administración Oral , Absorción Intestinal/fisiología , Solubilidad
2.
Pharmaceutics ; 15(4)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37111729

RESUMEN

Parkinson's disease, one of the most common neurodegenerative diseases, may not only affect the motor system, but also the physiology of the gastrointestinal tract. Delayed gastric emptying, impaired motility and altered intestinal bacteria are well-established consequences of the disease, which can have a pronounced effect on the absorption of orally administered drugs. In contrast, no studies have been performed into the composition of intestinal fluids. It is not unlikely that Parkinson's disease also affects the composition of intestinal fluids, a critical factor in the in vitro and in silico simulation of drug dissolution, solubilization and absorption. In the current study, duodenal fluids were aspirated from Parkinson's disease (PD) patients and age-matched healthy controls (healthy controls, HC) consecutively in fasted and fed conditions. The fluids were then characterized for pH, buffer capacity, osmolality, total protein, phospholipids, bile salts, cholesterol and lipids. In a fasted state, the intestinal fluid composition was highly similar in PD patients and healthy controls. In general, the same was true for fed-state fluids, apart from a slightly slower and less pronounced initial change in factors directly affected by the meal (i.e., buffer capacity, osmolality, total protein and lipids) in PD patients. The absence of a fast initial increase for these factors immediately after meal intake, as was observed in healthy controls, might result from slower gastric emptying in PD patients. Irrespective of the prandial state, a higher relative amount of secondary bile salts was observed in PD patients, potentially indicating altered intestinal bacterial metabolism. Overall, the data from this study indicate that only minor disease-specific adjustments in small intestinal fluid composition should be considered when simulating intestinal drug absorption in PD patients.

3.
AAPS J ; 24(6): 101, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36168002

RESUMEN

This publication provides some industry reflections on experiences from the Chemistry, Manufacturing, and Controls (CMC) development and manufacture and supply of vaccines and therapies in response to the COVID-19 pandemic. It integrates these experiences with the outcomes from the collaborative work between industry and regulators in recent years on innovative science- and risk-based CMC strategies to the development of new, high-quality products for unmet medical needs. The challenges for rapid development are discussed and various approaches to facilitate accelerated development and global supply are collated for consideration. Relevant regulatory aspects are reviewed, including the role of Emergency Use/Conditional Marketing Authorizations, the dialogue between sponsors and agencies to facilitate early decision-making and alignment, and the value of improving reliance/collaborative assessment and increased collaboration between regulatory authorities to reduce differences in global regulatory requirements. Five areas are highlighted for particular consideration in the implementation of strategies for the quality-related aspects of accelerated development and supply: (1) the substantial need to advance reliance or collaborative assessment; (2) the need for early decision making and streamlined engagement between industry and regulatory authorities on CMC matters; (3) the need to further facilitate 'post-approval' changes; (4) fully exploiting prior and platform knowledge; and (5) review and potential revision of legal frameworks. The recommendations in this publication are intended to contribute to the discussion on approaches that can result in earlier and greater access to high-quality pandemic vaccines and therapies for patients worldwide but could also be useful in general for innovative medicines addressing unmet medical needs.


Asunto(s)
COVID-19 , Vacunas , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , Vacunas/uso terapéutico
4.
Pharmaceutics ; 14(5)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35631595

RESUMEN

A webinar series that was organised by the Academy of Pharmaceutical Sciences Biopharmaceutics focus group in 2021 focused on the challenges of developing clinically relevant dissolution specifications (CRDSs) for oral drug products. Industrial scientists, together with regulatory and academic scientists, came together through a series of six webinars, to discuss progress in the field, emerging trends, and areas for continued collaboration and harmonisation. Each webinar also hosted a Q&A session where participants could discuss the shared topic and information. Although it was clear from the presentations and Q&A sessions that we continue to make progress in the field of CRDSs and the utility/success of PBBM, there is also a need to continue the momentum and dialogue between the industry and regulators. Five key areas were identified which require further discussion and harmonisation.

5.
AAPS J ; 24(3): 60, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501614

RESUMEN

Traditionally, excipients have been considered in drug development from the perspective of their influence on drug solubility, manufacturability, and ability to control in vitro and in vivo drug release. These effects have been largely evaluated through studies involving in vitro dissolution methods. However, there is a growing awareness that what had previously been considered biologically inert excipients can exert numerous in vivo effects. This includes the potential to change gastrointestinal (GI) transit time, enterocyte passive transcellular or paracellular permeability, active transport activity, or presystemic drug metabolism. In this critical overview of the biological effects of excipients (Part I), we provide a summary of select published studies that explore these various in vivo factors. We also include a table that points readers to published reviews that list a range of excipients known to have biological activity. A subsequent discussion on in vitro, in vivo, and in silico methods that can be used to explore these excipient effects is provided in a separate (Part 2) continuation of this critical overview.


Asunto(s)
Excipientes , Absorción Intestinal , Permeabilidad , Solubilidad
6.
J Pharm Sci ; 110(2): 594-609, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33152375

RESUMEN

This report summarizes the proceedings for Day 3 of the workshop titled "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, patient-centric product development necessitates the development of clinically relevant drug product specifications (CRDPS). In this regard, Physiologically Based Biopharmaceutics modeling (PBBM) is a viable tool to establish links between in-vitro to in-vivo data, and support with establishing CRDPS. The theme of day 3 was practical applications of PBBM to support drug product quality. In this manuscript, case studies from US FDA, EMA and pharmaceutical industry on applications of PBBM in drug product quality are summarized which include 1) regulatory agency's perspectives on establishing the safe space and achieving study waivers, 2) model-informed risk assessment on the effects of acid reducing agents, bridging of dissolution methods, food effect, and formulation selection, and 3) understanding clinical formulation performance. Breakout session discussions focused on four topics - 1) terminologies related to physiologically based modeling in support of drug product quality, 2) regulatory harmonization on evidentiary standards, 3) CRDPS approaches and 4) bridging between biorelevant and quality control (QC) dissolution methods.


Asunto(s)
Biofarmacia , Preparaciones Farmacéuticas , Humanos , Modelos Biológicos , Informe de Investigación , Solubilidad
7.
J Pharm Sci ; 110(2): 584-593, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33058891

RESUMEN

This workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM. This manuscript gives an overview of podium presentations and summarizes breakout (BO) session discussions related to (1) challenges and opportunities for using PBBM to assess the clinical impact of formulation and manufacturing changes on the in vivo performance of a drug product, (2) best practices to account for parameter uncertainty and variability during model development, (3) best practices in the development, verification and validation of PBBM and (4) opportunities and knowledge gaps related to leveraging PBBM for virtual bioequivalence simulations.


Asunto(s)
Biofarmacia , Informe de Investigación , Modelos Biológicos , Solubilidad , Equivalencia Terapéutica
9.
Eur J Pharm Biopharm ; 156: 50-63, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32805361

RESUMEN

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlus™ (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project. Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters. On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.


Asunto(s)
Biofarmacia/normas , Análisis de Datos , Absorción Intestinal/efectos de los fármacos , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Programas Informáticos/normas , Administración Oral , Biofarmacia/métodos , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/normas , Bases de Datos Factuales/normas , Predicción , Humanos , Absorción Intestinal/fisiología , Preparaciones Farmacéuticas/administración & dosificación
10.
AAPS J ; 22(5): 97, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719954

RESUMEN

Decision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016). Integration of systems thinking with pharmaceutical development, manufacturing, and clinical sciences and health care is unique to BioRAM where the developed strategy identifies the system and enables risk characterization and balancing for the entire system. Successful decision-making process in BioRAM starts with the Blueprint (BP) meetings. Through shared understanding of the system, the program strategy is developed and captured in the program BP. Here, we provide three semi-hypothetical examples for illustrating risk-based decision-making in high and moderate risk settings. In the high-risk setting, which is a rare disease area, two completely alternate development approaches are considered (gene therapy and small molecule). The two moderate-risk examples represent varied knowledge levels and drivers for the programs. In one moderate-risk example, knowledge leveraging opportunities are drawn from the manufacturing knowledge and clinical performance of a similar drug substance. In the other example, knowledge on acute tolerance patterns for a similar mechanistic pathway is utilized for identifying markers to inform the drug release profile from the dosage form with the necessary "flexibility" for dosing. All examples illustrate implementation of the BioRAM strategy for leveraging knowledge and decision-making to optimize the clinical performance of drug products for patient benefit.


Asunto(s)
Biofarmacia , Análisis de Sistemas , Toma de Decisiones , Medición de Riesgo
11.
AAPS J ; 22(2): 54, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32133550

RESUMEN

Medicine co-administration with food or drink vehicles is a common administration practice in paediatrics. The aims of this review were (i) to describe the current recommended strategies for co-administration of paediatric medicines with food and drinks (vehicles); (ii) to compare current administration recommendations from different countries; and (iii) to obtain a global perspective on the rationale behind the choice of recommended vehicle, in the context of the physicochemical properties of the drug and formulation. This study used a defined search strategy on the practices of paediatric medicine co-administration with vehicles, recommended in a commonly used paediatric and neonatal handbook, in addition to the information previously gathered from UK formularies. Logistic regression analysis was performed to further understand the biopharmaceutical basis of the choice of recommended vehicle for medicine co-administration. Differences were identified in the type of vehicles globally recommended for medicine co-administration. Ultimately, a statistical model was developed which provided an understanding on which vehicle is recommended for use with drugs/formulations, with basis on their biopharmaceutical properties. Overall, this review highlights the areas where further information is needed to support standardised procedures and guide the recommendation of age-appropriate and acceptable vehicles for use in the co-administration of paediatric medicines. Unified requirements are needed for harmonisation of the practice of medicine co-administration with vehicles. In vitro and/or in silico tools should be developed to evaluate the potential clinical outcomes of this practice during paediatric drug development.


Asunto(s)
Bebidas , Ingestión de Alimentos , Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Adolescente , Factores de Edad , Niño , Preescolar , Composición de Medicamentos , Formularios Farmacéuticos como Asunto , Disparidades en Atención de Salud , Humanos , Lactante , Modelos Estadísticos , Cooperación del Paciente , Preparaciones Farmacéuticas/química , Guías de Práctica Clínica como Asunto , Equivalencia Terapéutica
12.
Eur J Pharm Sci ; 147: 105280, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32109493

RESUMEN

The release and absorption profile of an oral medication is influenced by the physicochemical properties of the drug and its formulation, as well as by the anatomy and physiology of the gastrointestinal (GI) tract. During drug development the bioavailability of a new drug is typically assessed in early clinical studies in a healthy adult population. However, many disease conditions are associated with an alteration of the anatomy and/or physiology of the GI tract. The same holds true for some subpopulations, such as paediatric or elderly patients, or populations with different ethnicity. The variation in GI tract conditions compared to healthy adults can directly affect the kinetics of drug absorption, and thus, safety and efficacy of an oral medication. This review provides an overview of GI tract properties in special populations compared to healthy adults and discusses how drug absorption is affected by these conditions. Particular focus is directed towards non-disease dependent conditions (age, sex, ethnicity, genetic factors, obesity, pregnancy), GI diseases (ulcerative colitis and Crohn's disease, celiac disease, cancer in the GI tract, Roux-en-Y gastric bypass, lactose intolerance, Helicobacter pylori infection, and infectious diseases of the GI tract), as well as systemic diseases that change the GI tract conditions (cystic fibrosis, diabetes, Parkinson's disease, HIV enteropathy, and critical illness). The current knowledge about GI conditions in special populations and their impact on drug absorption is still limited. Further research is required to improve confidence in pharmacokinetic predictions and dosing recommendations in the targeted patient population, and thus to ensure safe and effective drug therapies.


Asunto(s)
Absorción Gastrointestinal/fisiología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Administración Oral , Adulto , Anciano , Niño , Liberación de Fármacos , Enfermedades Gastrointestinales , Humanos
13.
AAPS J ; 22(2): 46, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32048079

RESUMEN

The presence of different excipient types/brands in solid oral dosage forms may affect product performance and drug bioavailability. Understanding the biopharmaceutical implications of superdisintegrant variability (changes in material properties), variation (changes in excipient amount) and interchangeability (use of different excipient types with the same intended functionality) in oral drug performance would be beneficial for the development of robust final dosage forms. The current study investigated the impact of superdisintegrants (sodium starch glycolate, croscarmellose sodium, crospovidone) on the apparent solubility of drugs with different physicochemical properties (drug ionisation, drug lipophilicity, drug aqueous solubility). Compendial and biorelevant media were used to assess the impact of gastrointestinal conditions on the effects of excipient on drug apparent solubility. For the majority of compounds, changes in drug apparent solubility were not observed in superdisintegrant presence, apart from the cases of highly ionised compounds (significant decrease in drug solubility) and/or compounds that aggregate/precipitate in solution (significant increase in drug solubility). Excipient variability did not greatly affect the impact of excipients on drug apparent solubility. The use of multivariate data analysis identified the biopharmaceutical factors affecting excipient performance. The construction of roadmaps revealed that superdisintegrants may be of low risk for the impact of excipients on oral drug performance based on drug solubility alone; superdisintegrants activity could still be a risk for oral bioavailability due to their effects on tablet disintegration.


Asunto(s)
Excipientes/química , Preparaciones Farmacéuticas/química , Carboximetilcelulosa de Sodio/química , Composición de Medicamentos , Concentración de Iones de Hidrógeno , Modelos Químicos , Povidona/química , Solubilidad , Almidón/análogos & derivados , Almidón/química , Viscosidad
14.
Pharmaceutics ; 12(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878006

RESUMEN

A meeting that was organized by the Academy of Pharmaceutical Sciences Biopharmaceutics and Regulatory Sciences focus groups focused on the challenges of Developing Clinically Relevant Dissolution Specifications (CRDS) for Oral Drug Products. Industrial Scientists that were involved in product development shared their experiences with in vitro dissolution and in silico modeling approaches to establish clinically relevant dissolution specifications. The regulators shared their perspectives on the acceptability of these different strategies for the development of acceptable specifications. The meeting also reviewed several collaborative initiatives that were relevant to regulatory biopharmaceutics. Following the scientific presentations, a roundtable session provided an opportunity for delegates to discuss the information that was shared during the presentations, debate key questions, and propose strategies to make progress in this critical area of regulatory biopharmaceutics. It was evident from the presentations and subsequent discussions that progress continues to be made with approaches to establish robust CRDS. Further dialogue between industry and regulatory agencies greatly assisted future developments and key areas for focused discussions on CRDS were identified.

15.
J Pharm Sci ; 108(11): 3461-3477, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31265846

RESUMEN

BACKGROUND: Of the various drug therapies that influence gastrointestinal (GI) physiology, one of the most important are the acid-reducing agents (ARAs). Because changes in GI physiology often influence the pharmacokinetics of drugs given orally, there is a need to identify in vitro methods with which such effects can be elucidated. OBJECTIVE: Literature concerning the effects of ARAs (antacids, H2-receptor antagonists, and proton pump inhibitors [PPIs]) on GI physiology are reviewed with the aim of identifying conditions under which drugs are released after oral administration in the fasted state. In vitro dissolution tests to mimic the effects in the stomach were designed for H2-receptor antagonists and PPIs. CONCLUSIONS: The impact of ARAs on GI physiology depends on the type, duration, and amount of ARA administered as well as the location in the GI tract, with greatest impact on gastric physiology. While ARAs have a high impact on the gastric fluid pH and composition, changes in volume, viscosity, surface tension, and gastric emptying appear to be less profound. The proposed dissolution tests enable a ready comparison between dosage form performance in healthy adults and those receiving PPIs or H2-receptor antagonists.


Asunto(s)
Antiácidos/farmacología , Antiácidos/uso terapéutico , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Administración Oral , Animales , Vaciamiento Gástrico/efectos de los fármacos , Vaciamiento Gástrico/fisiología , Humanos , Solubilidad/efectos de los fármacos
16.
Eur J Pharm Biopharm ; 141: 130-138, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31128247

RESUMEN

The potential for certain excipients to impact drug absorption is the subject of numerous publications. Reflecting this, current Biopharmaceutics Classification System (BCS) guidelines place restrictions on the level of change in excipients to be eligible for a BCS biowaiver. The degree of change permitted between test and reference formulations varies between BCS Class 1 and 3, and also across different regulatory authorities. This article reviews the literature evidence for excipients to impact drug absorption, with a particular focus on identifying effects which may be important for BCS Class 1 and 3 compounds and formulations. Literature examples were categorised according to the mechanism by which the excipient was believed to impact drug absorption, and the relevance of these mechanisms for compounds within BCS Class 1 and 3 was assessed. The likelihood of using the excipient in solid oral immediate release formulations (i.e. formulation types which would be eligible for BCS biowaivers) was also considered. Using this mechanistic and risk-based approach, potential critical excipients for BCS Class 1 and 3 compounds were identified. Based on the literature data, there are only a limited number of mechanisms by which excipients could affect the absorption of a BCS Class 3 drug. For BCS1, absorption is very unlikely to be affected by excipient changes. For many of these excipients, there is no in vivo evidence of such an effect having occurred. The risk can be mitigated to a large extent by applying some compound-specific understanding of the absorption site, rate and mechanism of the particular API under consideration.


Asunto(s)
Excipientes/química , Absorción Intestinal/efectos de los fármacos , Preparaciones Farmacéuticas/química , Animales , Biofarmacia/métodos , Química Farmacéutica/métodos , Humanos
17.
Clin Pharmacol Drug Dev ; 8(5): 647-656, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30748125

RESUMEN

Two clinical studies were performed in healthy volunteers to investigate food and antacid effects on lesinurad, a novel selective uric acid reabsorption inhibitor approved for treatment of hyperuricemia associated with gout in combination with xanthine oxidase inhibitors. Study 1 evaluated a high-fat, high-calorie meal or high doses of antacids (3000 mg calcium carbonate or 1600 mg magnesium hydroxide/1600 mg aluminum hydroxide) on the pharmacokinetics (PK) and pharmacodynamics (PD) of 400 mg oral lesinurad. Study 2 evaluated low doses of antacids (1250 mg calcium carbonate or 800 mg magnesium hydroxide/800 mg aluminum hydroxide) on the PK and PD of 400 mg lesinurad. Food did not alter the plasma AUC of lesinurad and only reduced its Cmax by 18%. In the fasted conditions, high-dose calcium carbonate reduced the Cmax and AUC of lesinurad by 54% and 38%, respectively, whereas high-dose magnesium hydroxide/aluminum hydroxide reduced Cmax and AUC by 36% and 31%, respectively. Food enhanced the maximum serum urate (sUA)-lowering effect of lesinurad by approximately 20% despite reducing the Cmax of lesinurad. High-dose calcium carbonate decreased the urate-lowering effect approximately 20% in the first 6 hours, whereas high-dose magnesium hydroxide/aluminum hydroxide reduced the effect by 26%. Low-dose calcium carbonate or magnesium hydroxide/aluminum hydroxide in the presence of food did not significantly affect plasma lesinurad Cmax and AUC or the sUA lowering and renal handling of uric acid. In summary, study results suggest food did not meaningfully alter lesinurad PK and PD. High doses of antacids reduced lesinurad AUC up to 40% and reduced the lesinurad uric acid-lowering effect.


Asunto(s)
Hidróxido de Aluminio/farmacología , Antiácidos/farmacología , Carbonato de Calcio/farmacología , Interacciones Alimento-Droga , Supresores de la Gota , Hidróxido de Magnesio/farmacología , Tioglicolatos , Triazoles , Ácido Úrico/sangre , Adolescente , Adulto , Estudios Cruzados , Grasas de la Dieta/administración & dosificación , Combinación de Medicamentos , Supresores de la Gota/sangre , Supresores de la Gota/farmacocinética , Supresores de la Gota/farmacología , Supresores de la Gota/orina , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Tioglicolatos/sangre , Tioglicolatos/farmacocinética , Tioglicolatos/farmacología , Tioglicolatos/orina , Triazoles/sangre , Triazoles/farmacocinética , Triazoles/farmacología , Triazoles/orina , Adulto Joven
18.
J Pharm Sci ; 107(1): 34-41, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074376

RESUMEN

This article intends to summarize the current views of the IQ Consortium Dissolution Working Group, which comprises various industry companies, on the roles of dissolution testing throughout pharmaceutical product development, registration, commercialization, and beyond. Over the past 3 decades, dissolution testing has evolved from a routine and straightforward test as a component of end-product release into a comprehensive set of tools that the developer can deploy at various stages of the product life cycle. The definitions of commonly used dissolution approaches, how they relate to one another and how they may be applied in modern drug development, and life cycle management is described in this article. Specifically, this article discusses the purpose, advantages, and limitations of quality control, biorelevant, and clinically relevant dissolution methods.


Asunto(s)
Preparaciones Farmacéuticas/química , Animales , Química Farmacéutica/métodos , Humanos , Control de Calidad , Solubilidad
19.
AAPS J ; 19(6): 1537-1549, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28831727

RESUMEN

This manuscript represents the perspective of the Dissolution Analytical Working Group of the IQ Consortium. The intent of this manuscript is to highlight the challenges of, and to provide a recommendation on, the development of clinically relevant dissolution specifications (CRS) for immediate release (IR) solid oral dosage forms. A roadmap toward the development of CRS for IR products containing active ingredients with a non-narrow therapeutic window is discussed, within the context of mechanistic dissolution understanding, supported by in-human pharmacokinetic (PK) data. Two case studies present potential outcomes of following the CRS roadmap and setting dissolution specifications. These cases reveal some benefits and challenges of pursuing CRS with additional PK data, in light of current regulatory positions, including that of the US Food and Drug Administration (FDA), who generally favor this approach, but with the understanding that both industry and regulatory agency perspectives are still evolving in this relatively new field. The CRS roadmap discussed in this manuscript also describes a way to develop clinically relevant dissolution specifications based primarily on dissolution data for batches used in pivotal clinical studies, acknowledging that not all IR product development efforts need to be supported by additional PK studies, albeit with the associated risk of potentially unnecessarily tight manufacturing controls. Recommendations are provided on what stages during the life cycle investment into in vivo studies may be valuable. Finally, the opportunities for CRS within the context of post-approval changes, Modeling and Simulation (M&S), and the application of biowaivers, are briefly discussed.


Asunto(s)
Solubilidad , Administración Oral , Humanos , Modelos Biológicos , Comprimidos
20.
J Pharm Pharmacol ; 69(4): 384-397, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27704550

RESUMEN

OBJECTIVES: This review focuses on the recommended strategies for the oral administration of paediatric medicines with food in the context of their biopharmaceutical properties. KEY FINDINGS: Acceptability of oral medicines in young patients is more challenging than in adult patients. Mixing oral dosage forms with foods and drinks is sometimes suggested to administer a specific dose and enhance compliance in the paediatric population. In this review, the strategies for the co-administration of paediatric medicines with food and drinks are discussed. Current administration practices as reported by healthcare professionals and parents/carers are compared with the relevant guidelines. Differences in the type of vehicles recommended to be used and actually used in current practice were identified. Correlations of the type of food recommended, the type of formulation and the drug's biopharmaceutical classification system (BCS) class were performed and revealed that recommendations should be made on a case-by-case basis. SUMMARY: The propensity for physiochemical or bioavailability changes that may occur from the co-administration of medicines with food and drinks in the paediatric population should be considered, and harmonisation of the recommended administration strategies is needed.


Asunto(s)
Bebidas , Alimentos , Pediatría/métodos , Preparaciones Farmacéuticas/administración & dosificación , Administración Oral , Adolescente , Disponibilidad Biológica , Niño , Preescolar , Formas de Dosificación , Composición de Medicamentos , Interacciones Alimento-Droga/fisiología , Humanos , Lactante , Recién Nacido , Preparaciones Farmacéuticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...