Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123481

RESUMEN

Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.

2.
ACS Pharmacol Transl Sci ; 7(2): 478-492, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38357283

RESUMEN

Functional selectivity in the context of serotonin 2A (5-HT2A) receptor agonists is often described as differences psychedelic compounds have in the activation of Gq vs ß-arrestin signaling in the brain and how that may relate to inducing psychoactive and hallucinatory properties with respect to each other. However, the presence of 5-HT2A receptors throughout the body in several cell types, including endothelial, endocrine, and immune-related tissues, suggests that functional selectivity may exist in the periphery as well. Here, we examine functional selectivity between two 5-HT2A receptor agonists of the phenylalkylamine class: (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] and (R)-2,5-dimethoxy-4-trifluoromethylamphetamine [(R)-DOTFM]. Despite comparable in vitro activity at the 5-HT2A receptor as well as similar behavioral potency, (R)-DOTFM does not exhibit an ability to prevent inflammation or elevated airway hyperresponsiveness (AHR) in an acute murine ovalbumin-induced asthma model as does (R)-DOI. Furthermore, there are distinct differences between protein expression and inflammatory-related gene expression in pulmonary tissues between the two compounds. Using (R)-DOI and (R)-DOTFM as tools, we further elucidated the anti-inflammatory mechanisms underlying the powerful anti-inflammatory effects of certain psychedelics and identified key mechanistic components of the anti-inflammatory effects of psychedelics, including suppression of arginase 1 expression.

3.
Cells ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38334632

RESUMEN

Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.


Asunto(s)
Melanoma , Sirolimus , Humanos , Sirolimus/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melanoma/patología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Resistencia a Antineoplásicos
4.
Cancers (Basel) ; 16(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275910

RESUMEN

Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.

5.
Cancers (Basel) ; 15(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37370757

RESUMEN

The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.

6.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982421

RESUMEN

The antimicrobial protein S100A15 belongs to the S100 family, which is differentially expressed in a variety of normal and pathological tissues. Although the function of S100A15 protein has been discussed in several studies, its induction and regulation in oral mucosa, so far, are largely unknown. In this study, we demonstrate that S100A15 is induced by the stimulation of oral mucosa with gram- or gram+ bacterial pathogens, as well as with the purified membrane components, namely lipopolysaccharides (LPS) and lipoteichoic acid (LTA). The stimulation of the human gingival fibroblast (GF) and the human mouth epidermal carcinoma (KB) cell lines with either gram- or gram+ bacterial pathogens or their purified membrane components (LPS and LTA) results in the activation of NF-κB, apoptosis-regulating kinase1 (ASK1), and MAP kinase signaling pathways including, c-Jun N-terminal kinase (JNK) and p38 together with their physiological substrates AP-1 and ATF-2, respectively. Inhibition of S100A15 by antibodies-mediated Toll-like receptor 4 (TLR4) or Toll-like receptor 2 (TLR2) neutralization reveals the induction of S100A15 protein by LPS/gram- bacterial pathogens to be TLR4- dependent mechanism, whereas induction by LTA/gram+ bacterial pathogens to be TLR2- dependent mechanism. Pre-treatment of GF and KB cells with JNK (SP600125), p38 (SB-203580), or NF-κB (Bay11-7082) specific inhibitors further demonstrates the importance of JNK, p38 and NF-κB pathways in the regulation of gram-/gram+ bacterial pathogen-induced S100A15 expression. Our data provide evidence that S100A15 is induced in cancer and non-cancer oral mucosa-derived cell lines by gram-/gram+ bacterial pathogens and provide insight into the molecular mechanisms by which gram- and gram+ bacterial pathogens induce S100A15 expression in the oral mucosa.


Asunto(s)
Antiinfecciosos , FN-kappa B , Humanos , Antiinfecciosos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4 , Receptores Toll-Like
7.
Curr Top Behav Neurosci ; 56: 229-245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546383

RESUMEN

The serotonin (5-hydroxytryptamine, 5-HT) 2A receptor is most well known as the common target for classic psychedelic compounds. Interestingly, the 5-HT2A receptor is the most widely expressed mammalian serotonin receptor and is found in nearly every examined tissue type including neural, endocrine, endothelial, immune, and muscle, suggesting it could be a novel and pharmacological target for several types of disorders. Despite this, the bulk of research on the 5-HT2A receptor is focused on its role in the central nervous system (CNS). Recently, activation of 5-HT2A receptors has emerged as a new anti-inflammatory strategy. This review will describe recent findings regarding psychedelics as anti-inflammatory compounds, as well as parse out differences in functional selectivity and immune regulation that exist between a number of well-known hallucinogenic compounds.


Asunto(s)
Alucinógenos , Animales , Antiinflamatorios/farmacología , Alucinógenos/farmacología , Mamíferos , Modelos Animales , Receptor de Serotonina 5-HT2A , Serotonina
8.
Pharmaceutics ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36678702

RESUMEN

Second- and third-line treatments of patients with antibiotic-resistant infections can have serious side effects, such as organ failure with prolonged care and recovery. As clinical practices such as cancer therapies, chronic disease treatment, and organ transplantation rely on the ability of available antibiotics to fight infection, the increased resistance of microbial pathogens presents a multifaceted, serious public health concern worldwide. The pipeline of traditional antibiotics is exhausted and unable to overcome the continuously developing multi-drug resistance. To that end, the widely observed limitation of clinically utilized antibiotics has prompted researchers to find a clinically relevant alternate antimicrobial strategy. In recent decades, the discovery of antimicrobial peptides (AMPs) as an excellent candidate to overcome antibiotic resistance has received further attention, particularly from scientists, health professionals, and the pharmaceutical industry. Effective AMPs are characterized by a broad spectrum of antimicrobial activities, high pathogen specificity, and low toxicity. In addition to their antimicrobial activity, AMPs have been found to be involved in a variety of biological functions, including immune regulation, angiogenesis, wound healing, and antitumor activity. This review provides a current overview of the structure, molecular action, and therapeutic potential of AMPs.

9.
ACS Pharmacol Transl Sci ; 4(2): 488-502, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860179

RESUMEN

Psychedelic drugs can exert potent anti-inflammatory effects. However, anti-inflammatory effects do not appear to correlate with behavioral activity, suggesting different underlying mechanisms. We hypothesized that the distinct structural features of psychedelics underlie functionally selective mechanisms at the target 5-HT2A receptor to elicit maximal anti-inflammatory effects. In order to test this hypothesis, we developed a new rat-based screening platform for allergic asthma. Next, we investigated 21 agonists at the 5-HT2A receptor from the three primary chemotypes (phenylalkylamine, ergoline, and tryptamine) for their ability to prevent airways hyperresponsiveness as a measure of pulmonary inflammation. Furthermore, we assessed each drug for in vitro activation of the canonical signaling pathway, calcium mobilization, from the 5-HT2A receptor. We find that the drug 2,5-dimethoxyphenethylamine (2C-H) represents the pharmacophore for anti-inflammatory activity and identify structural modifications that are either permissive or detrimental to anti-inflammatory activity. Additionally, there is no correlation between the ability of a particular psychedelic to activate intracellular calcium mobilization and to prevent the symptoms of asthma or with behavioral potencies. Our results support the notions that specific structural features mediate functional selectivity underlying anti-inflammatory activity and that relevant receptor activated pathways necessary for anti-inflammatory activity are different from canonical signaling pathways. Our results inform on the nature of interactions between ligands at the 5-HT2A receptor as they relate to anti-inflammatory activity and are crucial for the development of new 5-HT2A receptor agonists for anti-inflammatory therapeutics in the clinic that may be devoid of behavioral activity.

10.
Int J Oncol ; 55(6): 1324-1338, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31638203

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) remains one of the most common malignancies worldwide. Although the treatment outcomes of HNSCC have improved in recent years, the prognosis of patients with advanced-stage disease remains poor. Current treatment strategies for HNSCC include surgery as a primary therapy, while radio-, chemo-, and biotherapeutics can be applied as second-line therapy. Although tumor necrosis factor-α (TNF-α) is a potent tumor suppressor cytokine, the stimulation of opposing signals impairs its clinical utility as an anticancer agent. The aim of this study was to elucidate the mechanisms regulating TNF-α­induced opposing signals and their biological consequences in HNSCC cell lines. We determined the molecular mechanisms of TNF-α-induced opposing signals in HNSCC cells. Our in vitro analysis indicated that one of these signals triggers apoptosis, while the other induces both apoptosis and cell survival. The TNF-α-induced survival of HNSCC cells is mediated by the TNF receptor-associated factor 2 (TRAF2)/nuclear factor (NF)-κB-dependent pathway, while TNF-α-induced apoptosis is mediated by mitochondrial and non-mitochondrial-dependent mechanisms through FADD-caspase-8-caspase-3 and ASK-JNK-p53-Noxa pathways. The localization of Noxa protein to both the mitochondria and endoplasmic reticulum (ER) was found to cause mitochondrial dysregulation and ER stress, respectively. Using inhibitory experiments, we demonstrated that the FADD­caspase-8­caspase-3 pathway, together with mitochondrial dysregulation and ER stress-dependent pathways, are essential for the modulation of apoptosis, and the NF-κB pathway is essential for the modulation of anti-apoptotic effects/cell survival during the exposure of HNSCC cells to TNF-α. Our data provide insight into the mechanisms of TNF-α-induced opposing signals in HNSCC cells and may further help in the development of novel therapeutic approaches with which to minimize the systemic toxicity of TNF-α.


Asunto(s)
Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Estrés del Retículo Endoplásmico/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
11.
Life Sci ; 236: 116790, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626791

RESUMEN

AIMS: Although the bulk of research into the biology of serotonin 5-HT2A receptors has focused on its role in the CNS, selective activation of these receptors in peripheral tissues can produce profound anti-inflammatory effects. We previously demonstrated that the small molecule 5-HT2 receptor agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] inhibits TNF-α-mediated proinflammatory signaling cascades and inflammation via 5-HT2A receptor activation and prevents the development of, and inflammation associated with, acute allergic asthma in a mouse ovalbumin (OVA) model. Here, we investigated the ability of (R)-DOI to reverse inflammation and symptoms associated with established asthma in a newly developed model of chronic asthma. METHODS: An 18-week ovalbumin challenge period was performed to generate persistent, chronic asthma in BALB/c mice. Four once daily intranasal treatments of (R)-DOI were administered one week after allergen cessation, with respiratory parameters being measured by whole-body plethysmography (WBP). Cytokine and chemokine levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) in homogenized lung tissue, bronchoalveolar (BALF) fluid was analyzed for chemokine modulation by multiplex assays, and Periodic Acid-Schiff and Masson's Trichrome staining was performed to determine goblet cell infiltration and overall changes to lung morphology. KEY FINDINGS: 5-HT2 activation via (R)-DOI attenuates elevated airway hyperresponsiveness to methacholine, reduces pulmonary inflammation and mucus production, and reduces airway structural remodeling and collagen deposition by nearly 70%. SIGNIFICANCE: Overall, these data provide support for the therapeutic potential of (R)-DOI and 5-HT2 receptor activation for the treatment of asthma, and identifies (R)-DOI as a novel therapeutic compound against pulmonary fibrosis.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Anfetaminas/farmacología , Asma/tratamiento farmacológico , Neumonía/prevención & control , Receptores de Serotonina 5-HT2/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Asma/inducido químicamente , Asma/inmunología , Asma/patología , Enfermedad Crónica , Femenino , Hipersensibilidad/inmunología , Hipersensibilidad/patología , Hipersensibilidad/prevención & control , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/toxicidad , Neumonía/inmunología , Neumonía/patología
12.
Sci Rep ; 9(1): 13444, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31530895

RESUMEN

Coronary artery disease (CAD) is a progressive cardiovascular syndrome characterized by cholesterol-induced focal arterial lesions that impair oxygen delivery to the heart. As both innate and adaptive immune cells play critical roles in the formation and progression of arterial plaques and endothelial cell dysfunction, CAD is commonly viewed as a chronic inflammatory disorder. Our lab has previously discovered that 5-HT2A receptor activation with the 5-HT2 receptor selective agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] has potent anti-inflammatory activity in both cell culture and whole animal models. Here we have examined the putative therapeutic effects of (R)-DOI in the ApoE-/- high fat model of cardiovascular disease. Subcutaneously implanted osmotic minipumps were used to infuse sustained low rates (0.15 µg / hr) of (R)-DOI∙HCl to mice fed a high-fat "Western" diet. (R)-DOI treated mice had significant reductions in expression levels of mRNA for inflammatory markers like Il6 in vascular tissue, normalized glucose homeostasis, and reduced circulating cholesterol levels. As cardiovascular disease is a leading cause of death both globally and in the Western world, activation of 5-HT2A receptors at sub-behavioral levels may represent a new strategy to treat inflammation-based cardiovascular disease.


Asunto(s)
Anfetaminas/farmacología , Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Vasculitis/tratamiento farmacológico , Anfetaminas/sangre , Animales , Antiinflamatorios no Esteroideos/farmacología , Aorta Torácica/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Quimiocina CXCL10/sangre , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Masculino , Ratones Noqueados para ApoE , Receptores de Serotonina 5-HT2 , Agonistas del Receptor de Serotonina 5-HT2 , Factor de Necrosis Tumoral alfa/sangre , Vasculitis/metabolismo
13.
Int Rev Psychiatry ; 30(4): 363-375, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30102081

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT)2A receptor agonists have recently emerged as promising new treatment options for a variety of disorders. The recent success of these agonists, also known as psychedelics, like psilocybin for the treatment of anxiety, depression, obsessive-compulsive disorder (OCD), and addiction, has ushered in a renaissance in the way these compounds are perceived in the medical community and populace at large. One emerging therapeutic area that holds significant promise is their use as anti-inflammatory agents. Activation of 5-HT2A receptors produces potent anti-inflammatory effects in animal models of human inflammatory disorders at sub-behavioural levels. This review discusses the role of the 5-HT2A receptor in the inflammatory response, as well as highlight studies using the 5-HT2A agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] to treat inflammation in cellular and animal models. It also examines potential mechanisms by which 5-HT2A agonists produce their therapeutic effects. Overall, psychedelics regulate inflammatory pathways via novel mechanisms, and may represent a new and exciting treatment strategy for several inflammatory disorders.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Alucinógenos/administración & dosificación , Alucinógenos/farmacología , Psilocibina/administración & dosificación , Anfetaminas/administración & dosificación , Anfetaminas/farmacología , Animales , Ansiedad/psicología , Conducta Animal/efectos de los fármacos , Depresión/psicología , Humanos , Trastorno Obsesivo Compulsivo/psicología , Receptor de Serotonina 5-HT2A/metabolismo
14.
Biol Open ; 5(3): 372-80, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26912777

RESUMEN

Mammals express six major somatic linker histone subtypes, all of which display dynamic binding to chromatin, characterized by transient binding at a given location followed by rapid translocation to a new site. Using photobleaching techniques, we systematically measured the exchange rate of all six mouse H1 subtypes to determine their relative chromatin-binding affinity. Two subtypes, H1.1 and H1.2, display binding affinities that are significantly lower than all other subtypes. Using in vitro mutagenesis, the differences in chromatin-binding affinities between H1.1 (lower binding affinity) and H1.5 (higher binding affinity) were mapped to a single amino acid polymorphism near the junction of the globular and C-terminal domains. Overexpression of H1.5 in density arrested fibroblasts did not affect cell cycle progression after release. By contrast, overexpression of H1.1 resulted in a more rapid progression through G1/S relative to control cells. These results provide structural insights into the proposed functional significance of linker histone heterogeneity.

15.
Biochim Biophys Acta ; 1859(3): 468-75, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26454113

RESUMEN

The H1 or linker histones bind dynamically to chromatin in living cells via a process that involves transient association with the nucleosome near the DNA entry/exit site followed by dissociation, translocation to a new location, and rebinding. The mean residency time of H1 on any given nucleosome is about a minute, which is much shorter than that of most core histones but considerably longer than that of most other chromatin-binding proteins, including transcription factors. Here we review recent advances in understanding the kinetic pathway of H1 binding and how it relates to linker histone structure and function. We also describe potential mechanisms by which the dynamic binding of H1 might contribute directly to the regulation of gene expression and discuss several situations for which there is experimental evidence to support these mechanisms. Finally, we review the evidence for the participation of linker histone chaperones in mediating H1 exchange.


Asunto(s)
Histonas/química , Simulación de Dinámica Molecular , Animales , Regulación de la Expresión Génica , Chaperonas de Histonas/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA