Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Neuromuscul Dis ; 11(3): 679-685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461513

RESUMEN

Single exon duplications account for disease in a minority of Duchenne muscular dystrophy patients. Exon skipping in these patients has the potential to be highly therapeutic through restoration of full-length dystrophin expression. We conducted a 48-week open label study of casimersen and golodirsen in 3 subjects with an exon 45 or 53 duplication. Two subjects (aged 18 and 23 years) were non-ambulatory at baseline. Upper limb, pulmonary, and cardiac function appeared stable in the 2 subjects in whom they could be evaluated. Dystrophin expression increased from 0.94 % ±0.59% (mean±SD) of normal to 5.1% ±2.9% by western blot. Percent dystrophin positive fibers also rose from 14% ±17% at baseline to 50% ±42% . Our results provide initial evidence that the use of exon-skipping drugs may increase dystrophin levels in patients with single-exon duplications.


Asunto(s)
Distrofina , Exones , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Adolescente , Adulto Joven , Masculino , Oligonucleótidos/uso terapéutico , Duplicación de Gen
2.
Mol Ther ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38549375

RESUMEN

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.

3.
Mol Ther Methods Clin Dev ; 31: 101144, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38027058

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive X-linked disease caused by mutations in the DMD gene that prevent the expression of a functional dystrophin protein. Exon duplications represent 6%-11% of mutations, and duplications of exon 2 (Dup2) are the most common (∼11%) of duplication mutations. An exon-skipping strategy for Dup2 mutations presents a large therapeutic window. Skipping one exon copy results in full-length dystrophin expression, whereas skipping of both copies (Del2) activates an internal ribosomal entry site (IRES) in exon 5, inducing the expression of a highly functional truncated dystrophin isoform. We have previously confirmed the therapeutic efficacy of AAV9.U7snRNA-mediated skipping in the Dup2 mouse model and showed the absence of off-target splicing effects and lack of toxicity in mice and nonhuman primates. Here, we report long-term dystrophin expression data following the treatment of 3-month-old Dup2 mice with the scAAV9.U7.ACCA vector. Significant exon 2 skipping and robust dystrophin expression in the muscles and hearts of treated mice persist at 18 months after treatment, along with the partial rescue of muscle function. These data extend our previous findings and show that scAAV9.U7.ACCA provides long-term protection by restoring the disrupted dystrophin reading frame in the context of exon 2 duplications.

4.
Muscle Nerve ; 68(6): 833-840, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37789688

RESUMEN

INTRODUCTION/AIMS: Exome sequencing (ES) has proven to be a valuable diagnostic tool for neuromuscular disorders, which often pose a diagnostic challenge. The aims of this study were to investigate the clinical outcomes associated with utilization of ES in the pediatric neuromuscular clinic and to determine if specific phenotypic features or abnormal neurodiagnostic tests were predictive of a diagnostic result. METHODS: This was a retrospective medical record review of 76 pediatric neuromuscular clinic patients who underwent ES. Based upon clinical assessment prior to ES, patients were divided into two groups: affected by neuromuscular (n = 53) or non-neuromuscular (n = 23) syndromes. RESULTS: A diagnosis was made in 28/76 (36.8%), with 29 unique disorders identified. In the neuromuscular group, a neuromuscular condition was confirmed in 78% of those receiving a genetic diagnosis. Early age of symptom onset was associated with a significantly higher diagnostic yield. The most common reason neuromuscular diagnoses were not detected on prior testing was due to causative genes not being present on disease-specific panels. Changes to medical care were made in 57% of individuals receiving a diagnosis on ES. DISCUSSION: These data further support ES as a powerful diagnostic tool in the pediatric neuromuscular clinic and highlight the advantages of ES over gene panels, including the ability to identify diagnoses regardless of etiology, identify genes newly associated with disease, and identify multiple confounding diagnoses. Rapid and accurate diagnosis by ES can not only end the patient's diagnostic odyssey, but often impacts patients' medical management and genetic counseling of families.


Asunto(s)
Asesoramiento Genético , Enfermedades Neuromusculares , Humanos , Niño , Secuenciación del Exoma , Estudios Retrospectivos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Pruebas Genéticas
5.
Mol Ther Methods Clin Dev ; 30: 486-499, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37706184

RESUMEN

Duchenne muscular dystrophy is an X-linked disorder typically caused by out-of-frame mutations in the DMD gene. Most of these are deletions of one or more exons, which can theoretically be corrected through CRISPR-Cas9-mediated knockin. Homology-independent targeted integration is a mechanism for achieving such a knockin without reliance on homology-directed repair pathways, which are inactive in muscle. We designed a system based on insertion into intron 19 of a DNA fragment containing a pre-spliced mega-exon encoding DMD exons 1-19, along with the MHCK7 promoter, and delivered it via a pair of AAV9 vectors in mice carrying a Dmd exon 2 duplication. Maximal efficiency was achieved using a Cas9:donor adeno-associated virus (AAV) ratio of 1:5, with Cas9 under the control of the SPc5-12 promoter. This approach achieved editing of 1.4% of genomes in the heart, leading to 30% correction at the transcript level and restoration of 11% of normal dystrophin levels. Treatment efficacy was lower in skeletal muscles. Sequencing additionally revealed integration of fragmentary and recombined AAV genomes at the target site. These data provide proof of concept for a gene editing system that could restore full-length dystrophin in individuals carrying mutations upstream of intron 19, accounting for approximately 25% of Duchenne muscular dystrophy patients.

6.
Front Cell Dev Biol ; 11: 1181040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397246

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults and affects mainly the skeletal muscle, heart, and brain. DM1 is caused by a CTG repeat expansion in the 3'UTR region of the DMPK gene that sequesters muscleblind-like proteins, blocking their splicing activity and forming nuclear RNA foci. Consequently, many genes have their splicing reversed to a fetal pattern. There is no treatment for DM1, but several approaches have been explored, including antisense oligonucleotides (ASOs) aiming to knock down DMPK expression or bind to the CTGs expansion. ASOs were shown to reduce RNA foci and restore the splicing pattern. However, ASOs have several limitations and although being safe treated DM1 patients did not demonstrate improvement in a human clinical trial. AAV-based gene therapies have the potential to overcome such limitations, providing longer and more stable expression of antisense sequences. In the present study, we designed different antisense sequences targeting exons 5 or 8 of DMPK and the CTG repeat tract aiming to knock down DMPK expression or promote steric hindrance, respectively. The antisense sequences were inserted in U7snRNAs, which were then vectorized in AAV8 particles. Patient-derived myoblasts treated with AAV8. U7snRNAs showed a significant reduction in the number of RNA foci and re-localization of muscle-blind protein. RNA-seq analysis revealed a global splicing correction in different patient-cell lines, without alteration in DMPK expression.

7.
Eur J Hum Genet ; 31(6): 663-673, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36935420

RESUMEN

The major determinant of disease severity in Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD) is whether the dystrophin gene (DMD) mutation truncates the mRNA reading frame or allows expression of a partially functional protein. However, even in the complete absence of dystrophin, variability in disease severity is observed, and candidate gene studies have implicated several genes as modifiers. Here we present the largest genome-wide search to date for loci influencing severity in N = 419 DMD patients. Availability of subjects for such studies is quite limited, leading to modest sample sizes, which present a challenge for GWAS design. We have therefore taken special steps to minimize heterogeneity within our dataset at the DMD locus itself, taking a novel approach to mutation classification to effectively exclude the possibility of residual dystrophin expression, and utilized statistical methods that are well adapted to smaller sample sizes, including the use of a novel linear regression-like residual for time to ambulatory loss and the application of evidential statistics for the GWAS approach. Finally, we applied an unbiased in silico pipeline, utilizing functional genomic datasets to explore the potential impact of the best supported SNPs. In all, we obtained eight SNPs (out of 1,385,356 total) with posterior probability of trait-marker association (PPLD) ≥ 0.4, representing six distinct loci. Our analysis prioritized likely non-coding SNP regulatory effects on six genes (ETAA1, PARD6G, GALNTL6, MAN1A1, ADAMTS19, and NCALD), each with plausibility as a DMD modifier. These results support both recurrent and potentially new pathways for intervention in the dystrophinopathies.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Estudio de Asociación del Genoma Completo , Exones , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Gravedad del Paciente , Caminata , Antígenos de Superficie
8.
Neuromuscul Disord ; 33(2): 153-160, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36628841

RESUMEN

A rare disorder in the USA is one that affects <200,000 people, making inherited myopathies rare diseases. Increasing access to genetic testing has been instrumental for the diagnosis of inherited myopathies. Genetic findings, however, require clinical correlation due to variable phenotype, polygenic etiology of certain inherited disorders, and possible co-existing independent neuromuscular disorders. We searched the Mayo Clinic Rochester medical record (2004-2020) to identify adult patients carrying pathogenic variants or likely pathogenic variants in genes causative of myopathies and having a coexisting independent neuromuscular disorder classified as rare at https://rarediseases.info.nih.gov/. One additional patient was identified at Nationwide Children's hospital. Clinical and laboratory findings were reviewed. We identified 14 patients from 13 families fulfilling search criteria. Seven patients had a "double-trouble" inherited myopathy; two had an inherited myopathy with coexistent idiopathic myositis; three had an inherited myopathy with coexisting rare neuromuscular disorder of neurogenic type; a female DMD carrier had co-existing distal spinal muscular atrophy, which was featuring the clinical phenotype; and a patient with a MYH7 pathogenic variant had Sandhoff disease causing motor neuron disease. These cases highlight the relevance of correlating genetic findings, even when diagnostic, with clinical features, to allow precise diagnosis, optimal care, and accurate prognosis.


Asunto(s)
Enfermedad de la Neurona Motora , Enfermedades Musculares , Miositis , Enfermedades Neuromusculares , Femenino , Humanos , Enfermedades Raras , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Fenotipo , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética
9.
Mol Ther Nucleic Acids ; 30: 479-492, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36420217

RESUMEN

Duchenne muscular dystrophy (DMD) is a devastating muscle-wasting disease that arises due to the loss of dystrophin expression, leading to progressive loss of motor and cardiorespiratory function. Four exon-skipping approaches using antisense phosphorodiamidate morpholino oligomers (PMOs) have been approved by the FDA to restore a DMD open reading frame, resulting in expression of a functional but internally deleted dystrophin protein, but in patients with single-exon duplications, exon skipping has the potential to restore full-length dystrophin expression. Cell-penetrating peptide-conjugated PMOs (PPMOs) have demonstrated enhanced cellular uptake and more efficient dystrophin restoration than unconjugated PMOs. In the present study, we demonstrate widespread PPMO-mediated dystrophin restoration in the Dup2 mouse model of exon 2 duplication, representing the most common single-exon duplication among patients with DMD. In this proof-of-concept study, a single intravenous injection of PPMO targeting the exon 2 splice acceptor site induced 45% to 68% exon 2-skipped Dmd transcripts in Dup2 skeletal muscles 15 days post-injection. Muscle dystrophin restoration peaked at 77% to 87% average dystrophin-positive fibers and 41% to 51% of normal signal intensity by immunofluorescence, and 15.7% to 56.8% of normal by western blotting 15 to 30 days after treatment. These findings indicate that PPMO-mediated exon skipping is a promising therapeutic strategy for muscle dystrophin restoration in the context of exon 2 duplications.

10.
Mol Ther Methods Clin Dev ; 27: 47-60, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36186954

RESUMEN

In a phase 1/2, open-label dose escalation trial, we delivered rAAVrh74.MCK.GALGT2 (also B4GALNT2) bilaterally to the legs of two boys with Duchenne muscular dystrophy using intravascular limb infusion. Subject 1 (age 8.9 years at dosing) received 2.5 × 1013 vector genome (vg)/kg per leg (5 × 1013 vg/kg total) and subject 2 (age 6.9 years at dosing) received 5 × 1013 vg/kg per leg (1 × 1014 vg/kg total). No serious adverse events were observed. Muscle biopsy evaluated 3 or 4 months post treatment versus baseline showed evidence of GALGT2 gene expression and GALGT2-induced muscle cell glycosylation. Functionally, subject 1 showed a decline in 6-min walk test (6MWT) distance; an increase in time to run 100 m, and a decline in North Star Ambulatory Assessment (NSAA) score until ambulation was lost at 24 months. Subject 2, treated at a younger age and at a higher dose, demonstrated an improvement over 24 months in NSAA score (from 20 to 23 points), an increase in 6MWT distance (from 405 to 478 m), and only a minimal increase in 100 m time (45.6-48.4 s). These data suggest preliminary safety at a dose of 1 × 1014 vg/kg and functional stabilization in one patient.

11.
Mol Ther Methods Clin Dev ; 26: 279-293, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35949298

RESUMEN

Duchenne muscular dystrophy (DMD) is typically caused by mutations that disrupt the DMD reading frame, but nonsense mutations in the 5' part of the gene induce utilization of an internal ribosomal entry site (IRES) in exon 5, driving expression of a highly functional N-truncated dystrophin. We have developed an AAV9 vector expressing U7 small nuclear RNAs targeting DMD exon 2 and have tested it in a mouse containing a duplication of exon 2, in which skipping of both exon 2 copies induces IRES-driven expression, and skipping of one copy leads to wild-type dystrophin expression. One-time intravascular injection either at postnatal days 0-1 or at 2 months results in efficient exon skipping and dystrophin expression, and significant protection from functional and pathologic deficits. Immunofluorescence quantification showed 33%-53% average dystrophin intensity and 55%-79% average dystrophin-positive fibers in mice treated in adulthood, with partial amelioration of DMD pathology and correction of DMD-associated alterations in gene expression. In mice treated neonatally, dystrophin immunofluorescence reached 49%-85% of normal intensity and 76%-99% dystrophin-positive fibers, with near-complete correction of dystrophic pathology, and these beneficial effects persisted for at least 6 months. Our results demonstrate the robustness, durability, and safety of exon 2 skipping using scAAV9.U7snRNA.ACCA, supporting its clinical use.

13.
JAMA ; 327(15): 1456-1468, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35381069

RESUMEN

Importance: Corticosteroids improve strength and function in boys with Duchenne muscular dystrophy. However, there is uncertainty regarding the optimum regimen and dosage. Objective: To compare efficacy and adverse effects of the 3 most frequently prescribed corticosteroid regimens in boys with Duchenne muscular dystrophy. Design, Setting, and Participants: Double-blind, parallel-group randomized clinical trial including 196 boys aged 4 to 7 years with Duchenne muscular dystrophy who had not previously been treated with corticosteroids; enrollment occurred between January 30, 2013, and September 17, 2016, at 32 clinic sites in 5 countries. The boys were assessed for 3 years (last participant visit on October 16, 2019). Interventions: Participants were randomized to daily prednisone (0.75 mg/kg) (n = 65), daily deflazacort (0.90 mg/kg) (n = 65), or intermittent prednisone (0.75 mg/kg for 10 days on and then 10 days off) (n = 66). Main Outcomes and Measures: The global primary outcome comprised 3 end points: rise from the floor velocity (in rise/seconds), forced vital capacity (in liters), and participant or parent global satisfaction with treatment measured by the Treatment Satisfaction Questionnaire for Medication (TSQM; score range, 0 to 100), each averaged across all study visits after baseline. Pairwise group comparisons used a Bonferroni-adjusted significance level of .017. Results: Among the 196 boys randomized (mean age, 5.8 years [SD, 1.0 years]), 164 (84%) completed the trial. Both daily prednisone and daily deflazacort were more effective than intermittent prednisone for the primary outcome (P < .001 for daily prednisone vs intermittent prednisone using a global test; P = .017 for daily deflazacort vs intermittent prednisone using a global test) and the daily regimens did not differ significantly (P = .38 for daily prednisone vs daily deflazacort using a global test). The between-group differences were principally attributable to rise from the floor velocity (0.06 rise/s [98.3% CI, 0.03 to 0.08 rise/s] for daily prednisone vs intermittent prednisone [P = .003]; 0.06 rise/s [98.3% CI, 0.03 to 0.09 rise/s] for daily deflazacort vs intermittent prednisone [P = .017]; and -0.004 rise/s [98.3% CI, -0.03 to 0.02 rise/s] for daily prednisone vs daily deflazacort [P = .75]). The pairwise comparisons for forced vital capacity and TSQM global satisfaction subscale score were not statistically significant. The most common adverse events were abnormal behavior (22 [34%] in the daily prednisone group, 25 [38%] in the daily deflazacort group, and 24 [36%] in the intermittent prednisone group), upper respiratory tract infection (24 [37%], 19 [29%], and 24 [36%], respectively), and vomiting (19 [29%], 17 [26%], and 15 [23%]). Conclusions and Relevance: Among patients with Duchenne muscular dystrophy, treatment with daily prednisone or daily deflazacort, compared with intermittent prednisone alternating 10 days on and 10 days off, resulted in significant improvement over 3 years in a composite outcome comprising measures of motor function, pulmonary function, and satisfaction with treatment; there was no significant difference between the 2 daily corticosteroid regimens. The findings support the use of a daily corticosteroid regimen over the intermittent prednisone regimen tested in this study as initial treatment for boys with Duchenne muscular dystrophy. Trial Registration: ClinicalTrials.gov Identifier: NCT01603407.


Asunto(s)
Glucocorticoides , Distrofia Muscular de Duchenne , Prednisona , Niño , Preescolar , Femenino , Glucocorticoides/administración & dosificación , Glucocorticoides/efectos adversos , Glucocorticoides/uso terapéutico , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamiento farmacológico , Prednisona/administración & dosificación , Prednisona/efectos adversos , Prednisona/uso terapéutico , Pregnenodionas/efectos adversos
14.
Hum Mutat ; 43(4): 511-528, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165973

RESUMEN

DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Humanos , Intrones/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mutación , Sitios de Empalme de ARN
15.
Neurology ; 98(7): e730-e738, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34937785

RESUMEN

BACKGROUND AND OBJECTIVES: To describe the phenotypic spectrum of dystrophinopathy in a large cohort of individuals with DMD exon 2 duplications (Dup2), who may be particularly amenable to therapies directed at restoring expression of either full-length dystrophin or nearly full-length dystrophin through utilization of the DMD exon 5 internal ribosome entry site (IRES). METHODS: In this retrospective observational study, we analyzed data from large genotype-phenotype databases (the United Dystrophinopathy Project [UDP] and the Italian DMD network) and classified participants into Duchenne muscular dystrophy (DMD), intermediate muscular dystrophy (IMD), or Becker muscular dystrophy (BMD) phenotypes. Log-rank tests for time-to-event variables were used to compare age at loss of ambulation (LOA) in participants with Dup2 vs controls without Dup2 in the UDP database and for comparisons between steroid-treated vs steroid-naive participants with Dup2. RESULTS: Among 66 participants with Dup2 (UDP = 40, Italy = 26), 61% were classified as DMD, 9% as IMD, and 30% as BMD. Median age at last observation was 15.4 years (interquartile range 8.79-26.0) and 75% had been on corticosteroids for at least 6 months. Age at LOA differed significantly between participants with Dup2 DMD and historical controls without Dup2 DMD (p < 0.001). Valid spirometry was limited but suggested a delay in the typical age-related decline in forced vital capacity and 24 of 55 participants with adequate cardiac data had cardiomyopathy. DISCUSSION: Some patients with Dup2 display a milder disease course than controls without Dup2 DMD, and prolonged ambulation with corticosteroids suggests the potential of IRES activation as a molecular mechanism. As Dup2-targeted therapies reach clinical applications, this information is critical to aid in the interpretation of the efficacy of new treatments.


Asunto(s)
Distrofia Muscular de Duchenne , Estudios de Cohortes , Distrofina/genética , Exones , Humanos , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Fenotipo , Caminata
16.
Neuropathol Appl Neurobiol ; 48(3): e12785, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34847621

RESUMEN

AIMS: Dystrophin, the protein product of the DMD gene, plays a critical role in muscle integrity by stabilising the sarcolemma during contraction and relaxation. The DMD gene is vulnerable to a variety of mutations that may cause complete loss, depletion or truncation of the protein, leading to Duchenne and Becker muscular dystrophies. Precise and reproducible dystrophin quantification is essential in characterising DMD mutations and evaluating the outcome of efforts to induce dystrophin through gene therapies. Immunofluorescence microscopy offers high sensitivity to low levels of protein expression along with confirmation of localisation, making it a critical component of quantitative dystrophin expression assays. METHODS: We have developed an automated and unbiased approach for precise quantification of dystrophin immunofluorescence in muscle sections. This methodology uses microscope images of whole-tissue sections stained for dystrophin and spectrin to measure dystrophin intensity and the proportion of dystrophin-positive coverage at the sarcolemma of each muscle fibre. To ensure objectivity, the thresholds for dystrophin and spectrin are derived empirically from non-sarcolemmal signal intensity within each tissue section. Furthermore, this approach is readily adaptable for measuring fibre morphology and other tissue markers. RESULTS: Our method demonstrates the sensitivity and reproducibility of this quantification approach across a wide range of dystrophin expression in both dystrophinopathy patient and healthy control samples, with high inter-operator concordance. CONCLUSION: As efforts to restore dystrophin expression in dystrophic muscle bring new potential therapies into clinical trials, this methodology represents a valuable tool for efficient and precise analysis of dystrophin and other muscle markers that reflect treatment efficacy.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Biopsia , Distrofina/análisis , Técnica del Anticuerpo Fluorescente , Humanos , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Reproducibilidad de los Resultados
17.
Muscle Nerve ; 64(5): 614-619, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34383312

RESUMEN

INTRODUCTION/AIMS: In comparative studies, treatment effects are typically evaluated at a specific time point. When data are collected periodically, an alternative, clinically meaningful approach could be used to assess the totality of treatment effects. We applied a well-developed analytical procedure for evaluating longitudinal treatment effects using North Star Ambulatory Assessment (NSAA) data for illustration. METHODS: The NSAA comprises 17 scorable items/outcomes that measure changes in motor function. Using NSAA data from the published ataluren phase 3, randomized, placebo-controlled trial (NCT01826487), cumulative counts of failures to perform each item (transition from 2/1 [able/impaired] to 0 [unable]) were collected at specified time points for each patient over 48 wk. Treatment group-wise mean cumulative item failure count curves were constructed, comparing ataluren versus placebo and deflazacort versus prednisone/prednisolone among placebo-treated patients. The steeper the curve, the worse the outcome. A clinically meaningful summary of the between-group difference was provided for each comparison. RESULTS: The curve was uniformly steeper for placebo than ataluren after 16 wk and for prednisone/prednisolone than deflazacort after 8 wk. The two curves in each comparison continued to diverge thereafter, indicating sustained treatment benefits over time. Using a unique analytical approach, cumulative failure rates were reduced, on average, by 27% for ataluren versus placebo (rate ratio, 0.73; 95% confidence interval [CI], 0.55-0.97; p = .027) and 28% for deflazacort versus prednisone/prednisolone (rate ratio, 0.72; 95% CI, 0.53-0.96; p = .028). DISCUSSION: Unlike fixed-time analyses, this analytical approach enabled demonstration of cumulative, longitudinal treatment effects over time using repeatedly measured NSAA observations.


Asunto(s)
Distrofia Muscular de Duchenne , Ensayos Clínicos Fase III como Asunto , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Prednisolona/uso terapéutico , Prednisona/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia del Tratamiento
18.
Pediatr Neurol ; 122: 21-26, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34271497

RESUMEN

BACKGROUND: Approved treatments in spinal muscular atrophy (SMA) have resulted in unprecedented gains for many individuals. Use of available outcomes, typically developed for a specific type of SMA, do not cover the range of progression, often resulting in a battery of functional testing being completed at visits. Our objective was to validate the Neuromuscular Gross Motor Outcome (GRO) as a tool to quantify function in SMA across the span of abilities. METHODS: Patients with genetically confirmed SMA completed functional testing at each visit including the Neuromuscular GRO and other appropriate gross motor outcomes. RESULTS: We enrolled 91 patients with SMA types 1 to 3 between 8 days and 32.1 years. The GRO utilizes a 0- to 2-point scale with scores in our cohort ranging from 1 to 95 points with no floor or ceiling effect. GRO scores were significantly different across functional categories (P < 0.001) and treatment status (P = 0.01) and correlated to other functional assessments (P ≤ 0.001). All patients were measured using the GRO, whereas traditional outcomes were only appropriate on 36% to 59% of our cohort. CONCLUSION: The Neuromuscular GRO quantifies function across the span of age and abilities included in our cohort, allowing for continuous longitudinal monitoring on one scale to reduce the burden of testing in our heterogeneous clinic population.


Asunto(s)
Técnicas de Diagnóstico Neurológico/normas , Progresión de la Enfermedad , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatología , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Evaluación de Resultado en la Atención de Salud , Reproducibilidad de los Resultados , Adulto Joven
19.
Hum Gene Ther ; 32(21-22): 1346-1359, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34060935

RESUMEN

Exon skipping therapies for Duchenne muscular dystrophy that restore an open reading frame can be induced by the use of noncoding U7 small nuclear RNA (U7snRNA) modified by an antisense exon-targeting sequence delivered by an adeno-associated virus (AAV) vector. We have developed an AAV vector (AAV9.U7-ACCA) containing four U7snRNAs targeting the splice donor and acceptor sites of dystrophin exon 2, resulting in highly efficient exclusion of DMD exon 2. We assessed the specificity of splice variation induced by AAV9.U7-ACCA delivery in the Dmd exon 2 duplication (Dup2) mouse model through an unbiased RNA-seq approach. Treatment-related effects on pre-mRNA splicing were quantified using local splicing variation (LSV) analysis. Filtering the transcriptome for differences in treatment-related splicing resulted in only 16 candidate off-target LSVs. Only a single candidate off-target LSV was found in both skeletal and cardiac muscle tissue and occurred at a known variable cassette exon. In contrast, four LSVs represented significant on-target correction of Dmd exon 2 splicing and transcriptome analysis showed correction of known dystrophin-deficient gene dysregulation. We conclude that the absence of off-target splicing induced by treatment with the U7-ACCA vector supports the continued clinical development of this approach.


Asunto(s)
Terapia Genética , Distrofia Muscular de Duchenne , Animales , Distrofina/genética , Distrofina/metabolismo , Exones/genética , Ratones , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Empalme del ARN/genética , ARN Nuclear Pequeño/genética
20.
Prog Mol Biol Transl Sci ; 182: 225-255, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34175043

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by loss of dystrophin protein, encoded by the DMD gene. DMD manifests early in childhood as difficulty walking, progresses to loss of ambulation by the teens, and leads to death in early adulthood. Adeno-associated virus-vectorized gene therapies to restore dystrophin protein expression using gene replacement or antisense oligonucleotide-mediated pre-mRNA splicing modulation have emerged, making great strides in uncovering barriers to gene therapies for DMD and other genetic diseases. While this first-generation of DMD therapies are being evaluated in ongoing clinical trials, uncertainties regarding durability and therapeutic efficacy prompted the development of new experimental therapies for DMD that take advantage of somatic cell gene editing. These experimental therapies continue to advance toward clinic trials, but questions remain unanswered regarding safety and translatable efficacy. Here we review the advancements toward treatment of DMD using gene editing and modulation therapies, with an emphasis on those nearest to clinical applications.


Asunto(s)
Distrofia Muscular de Duchenne , Adolescente , Adulto , Distrofina/genética , Exones , Edición Génica , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...