Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38535814

RESUMEN

Shiga-toxin-producing Escherichia coli (STEC) causes a wide spectrum of diseases including hemorrhagic colitis and hemolytic uremic syndrome (HUS). The current Food Safety Inspection Service (FSIS) testing methods for STEC use the Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) protocol, which includes enrichment, cell plating, and genomic sequencing and takes time to complete, thus delaying diagnosis and treatment. We wanted to develop a rapid, sensitive, and potentially portable assay that can identify STEC by detecting Shiga toxin (Stx) using the CANARY (Cellular Analysis and Notification of Antigen Risks and Yields) B-cell based biosensor technology. Five potential biosensor cell lines were evaluated for their ability to detect Stx2. The results using the best biosensor cell line (T5) indicated that this biosensor was stable after reconstitution with assay buffer covered in foil at 4 °C for up to 10 days with an estimated limit of detection (LOD) of ≈0.1-0.2 ng/mL for days up to day 5 and ≈0.4 ng/mL on day 10. The assay detected a broad range of Stx2 subtypes, including Stx2a, Stx2b, Stx2c, Stx2d, and Stx2g but did not cross-react with closely related Stx1, abrin, or ricin. Additionally, this assay was able to detect Stx2 in culture supernatants of STEC grown in media with mitomycin C at 8 and 24 h post-inoculation. These results indicate that the STEC CANARY biosensor developed in this study is sensitive, reproducible, specific, rapid (≈3 min), and may be applicable for surveillance of the environment and food to protect public health.


Asunto(s)
Abrina , Toxina Shiga II , Escherichia coli , Toxina Shiga , Bioensayo
2.
J AOAC Int ; 105(6): 1698-1707, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-35666199

RESUMEN

BACKGROUND: The Salmonella CANARY® Zephyr assay is designed to provide rapid and reliable detection of Salmonella enterica from various types of environmental surfaces, including stainless steel, silicone rubber, high-density polyethylene (HDPE), and glazed ceramic. The assay is using cell- and immuno-based CANARY technology and tested on Smiths Detection's Zephyr platform. OBJECTIVE: The objective of this validation study was to evaluate the Salmonella CANARY Zephyr assay for its inclusivity/exclusivity, matrix study for 4 claimed environmental surfaces, consistency/stability, and robustness. METHODS: The Salmonella CANARY Zephyr assay was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM) Chapter 5 "Salmonella" using an unpaired study design for environmental surfaces including stainless steel, silicone rubber, HDPE, and glazed ceramic (1" × 1" test area). RESULTS: For the inclusivity and exclusivity evaluation, the Salmonella CANARY Zephyr assay correctly identified 101 out of 102 target organism isolates (with one strain of S. enterica subsp. indica not detected) and excluded all 33 non-target strains that were analyzed. For the matrix study, the Salmonella CANARY Zephyr assay demonstrated no statistically significant differences between presumptive and confirmed results or between candidate and reference method results. Probability of detection analysis of the Salmonella CANARY Zephyr method on robustness and product consistency/stability (lot-to-lot) study demonstrated no statistically significant differences. CONCLUSION: The Salmonella CANARY Zephyr assay is an effective method for the detection of Salmonella enterica from various environmental surfaces including stainless steel, silicone rubber, HDPE, and glazed ceramic. HIGHLIGHT: The Salmonella CANARY Zephyr assay allows for rapid and sensitive detection of Salmonella enterica on environmental surfaces. It only takes less than 5 min to prepare the sample and 1 min for instrument running/reading.


Asunto(s)
Polietileno , Salmonella enterica , Microbiología de Alimentos , Acero Inoxidable , Elastómeros de Silicona
3.
Toxins (Basel) ; 10(11)2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445734

RESUMEN

Botulinum neurotoxin (BoNT) intoxication can lead to the disease botulism, characterized by flaccid muscle paralysis that can cause respiratory failure and death. Due to the significant morbidity and mortality costs associated with BoNTs high toxicity, developing highly sensitive, rapid, and field-deployable assays are critically important to protect the nation's food supply against either accidental or intentional contamination. We report here that the B-cell based biosensor assay CANARY® (Cellular Analysis and Notification of Antigen Risks and Yields) Zephyr detects BoNT/A holotoxin at limits of detection (LOD) of 10.0 ± 2.5 ng/mL in assay buffer. Milk matrices (whole milk, 2% milk and non-fat milk) with BoNT/A holotoxin were detected at similar levels (7.4⁻7.9 ng/mL). BoNT/A complex was positive in carrot, orange, and apple juices at LODs of 32.5⁻75.0 ng/mL. The detection of BoNT/A complex in solid complex foods (ground beef, smoked salmon, green bean baby puree) ranged from 14.8 ng/mL to 62.5 ng/mL. Detection of BoNT/A complex in the viscous liquid egg matrix required dilution in assay buffer and gave a LOD of 171.9 ± 64.7 ng/mL. These results show that the CANARY® Zephyr assay can be a highly useful qualitative tool in environmental and food safety surveillance programs.


Asunto(s)
Técnicas Biosensibles , Toxinas Botulínicas Tipo A/análisis , Contaminación de Alimentos/análisis , Animales , Anticuerpos/inmunología , Toxinas Botulínicas Tipo A/inmunología , Huevos/análisis , Jugos de Frutas y Vegetales/análisis , Alimentos Infantiles/análisis , Leche/química , Carne Roja/análisis , Salmón
4.
PLoS Negl Trop Dis ; 9(5): e0003804, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26001191

RESUMEN

Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment. Earlier studies identified LHR1 as a Leishmania amazonensis transmembrane protein that mediates heme uptake. Null mutants of LHR1 are not viable and single knockout strains have reduced virulence, but very little is known about the properties of LHR1 directly associated with heme transport. Here, we use functional assays in Saccharomyces cerevisiae to show that specific tyrosine residues within the first three predicted transmembrane domains of LHR1 are required for efficient heme uptake. These tyrosines are unique to LHR1, consistent with the low similarity between LHR1 and its corresponding homologs in C. elegans and human. Substitution of these tyrosines in LHR1 resulted in varying degrees of heme transport inhibition, phenotypes that closely mirrored the impaired ability of L. amazonensis to replicate as intracellular amastigotes in macrophages and generate cutaneous lesions in mice. Taken together, our results imply that the mechanism for heme transport by LHR1 is distinctive and may have adapted to secure heme, a limiting cofactor, inside the host. Since LHR1 is significantly divergent from the human heme transporter HRG1, our findings lay the groundwork for selective targeting of LHR1 by small molecule antagonists.


Asunto(s)
Hemo/metabolismo , Leishmania mexicana/patogenicidad , Proteínas Protozoarias/metabolismo , Tirosina , Secuencia de Aminoácidos , Animales , Transporte Biológico , Caenorhabditis elegans/genética , Femenino , Genes Reporteros , Humanos , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Macrófagos/parasitología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Virulencia
5.
Nucleus ; 5(1): 66-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637396

RESUMEN

Lamin A is a major component of the lamina, which creates a dynamic network underneath the nuclear envelope. Mutations in the lamin A gene (LMNA) cause severe genetic disorders, one of which is Hutchinson-Gilford progeria syndrome (HGPS), a disease triggered by a dominant mutant named progerin. Unlike the wild-type lamin A, whose farnesylated C-terminus is excised during post-translational processing, progerin retains its farnesyl tail and accumulates on the nuclear membrane, resulting in abnormal nuclear morphology during interphase. In addition, membrane-associated progerin forms visible cytoplasmic aggregates in mitosis. To examine the potential effects of cytoplasmic progerin, nuclear localization signal (NLS) deleted progerin and lamin A (PGΔNLS and LAΔNLS, respectively) have been constructed. We find that both ΔNLS mutants are farnesylated in the cytosol and associate with a sub-domain of the ER via their farnesyl tails. While the farnesylation on LAΔNLS can be gradually removed, which leads to its subsequent release from the ER into the cytoplasm, PGΔNLS remains permanently farnesylated and membrane-bounded. Moreover, both ΔNLS mutants dominantly affect emerin's nuclear localization. These results reveal new insights into lamin A biogenesis and lamin A-emerin interaction.


Asunto(s)
Eliminación de Gen , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progeria/genética , Precursores de Proteínas/metabolismo , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Mitosis , Mutación , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Señales de Localización Nuclear/genética , Proteínas Nucleares/genética , Plásmidos/genética , Precursores de Proteínas/genética
6.
PLoS Pathog ; 10(1): e1003901, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24497831

RESUMEN

Leishmania parasites infect macrophages, cells that play an important role in organismal iron homeostasis. By expressing ferroportin, a membrane protein specialized in iron export, macrophages release iron stored intracellularly into the circulation. Iron is essential for the intracellular replication of Leishmania, but how the parasites compete with the iron export function of their host cell is unknown. Here, we show that infection with Leishmania amazonensis inhibits ferroportin expression in macrophages. In a TLR4-dependent manner, infected macrophages upregulated transcription of hepcidin, a peptide hormone that triggers ferroportin degradation. Parasite replication was inhibited in hepcidin-deficient macrophages and in wild type macrophages overexpressing mutant ferroportin that is resistant to hepcidin-induced degradation. Conversely, intracellular growth was enhanced by exogenously added hepcidin, or by expression of dominant-negative ferroportin. Importantly, dominant-negative ferroportin and macrophages from flatiron mice, a mouse model for human type IV hereditary hemochromatosis, restored the infectivity of mutant parasite strains defective in iron acquisition. Thus, inhibition of ferroportin expression is a specific strategy used by L. amazonensis to inhibit iron export and promote their own intracellular growth.


Asunto(s)
Hierro/metabolismo , Leishmania/metabolismo , Leishmaniasis/metabolismo , Macrófagos/metabolismo , Animales , Transporte Biológico Activo/genética , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hemocromatosis/genética , Hemocromatosis/metabolismo , Hemocromatosis/parasitología , Hemocromatosis/patología , Hepcidinas/biosíntesis , Hepcidinas/genética , Humanos , Leishmaniasis/genética , Leishmaniasis/patología , Macrófagos/parasitología , Macrófagos/patología , Ratones , Ratones Noqueados , Mutación
7.
J Vis Exp ; (78): e50531, 2013 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-23995606

RESUMEN

Plasma membrane injury is a frequent event, and wounds have to be rapidly repaired to ensure cellular survival. Influx of Ca(2+) is a key signaling event that triggers the repair of mechanical wounds on the plasma membrane within ~30 sec. Recent studies revealed that mammalian cells also reseal their plasma membrane after permeabilization with pore forming toxins in a Ca(2+)-dependent process that involves exocytosis of the lysosomal enzyme acid sphingomyelinase followed by pore endocytosis. Here, we describe the methodology used to demonstrate that the resealing of cells permeabilized by the toxin streptolysin O is also rapid and dependent on Ca(2+) influx. The assay design allows synchronization of the injury event and a precise kinetic measurement of the ability of cells to restore plasma membrane integrity by imaging and quantifying the extent by which the liphophilic dye FM1-43 reaches intracellular membranes. This live assay also allows a sensitive assessment of the ability of exogenously added soluble factors such as sphingomyelinase to inhibit FM1-43 influx, reflecting the ability of cells to repair their plasma membrane. This assay allowed us to show for the first time that sphingomyelinase acts downstream of Ca(2+)-dependent exocytosis, since extracellular addition of the enzyme promotes resealing of cells permeabilized in the absence of Ca(2+).


Asunto(s)
Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Esfingomielina Fosfodiesterasa/farmacología , Estreptolisinas/farmacología , Proteínas Bacterianas/farmacología , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Células HeLa , Humanos , Microscopía/métodos , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacocinética , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacocinética
8.
Curr Opin Microbiol ; 16(6): 716-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23962817

RESUMEN

Iron is essential for many metabolic pathways, but is toxic in excess. Recent identification of the ferric iron reductase LFR1, the ferrous iron transporter LIT1, and the heme transporter LHR1 greatly advanced our understanding of how Leishmania parasites acquire iron and regulate its uptake. LFR1 and LIT1 have close orthologs in plants, and are required for Leishmania virulence. Consistent with the lack of heme biosynthesis in trypanosomatids, LHR1 and LABCG5, a protein involved in heme salvage from hemoglobin, seem essential for Leishmania survival. LFR1, LIT1 and LHR1 are upregulated under low iron availability, in agreement with the need to prevent excessive iron uptake. Future studies should clarify how Leishmania interacts with the iron homeostasis machinery of its host cell, the macrophage.


Asunto(s)
Hierro/metabolismo , Leishmania/metabolismo , Redes y Vías Metabólicas , Homeostasis
9.
Infect Immun ; 81(10): 3620-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23876801

RESUMEN

The protozoan parasite Leishmania amazonensis is a heme auxotroph and must acquire this essential factor from the environment. Previous studies showed that L. amazonensis incorporates heme through the transmembrane protein LHR1 (Leishmania Heme Response 1). LHR1-null promastigotes were not viable, suggesting that the transporter is essential for survival. Here, we compared the growth, differentiation, and infectivity for macrophages and mice of wild-type, LHR1-single-knockout (LHR1/Δlhr1), and LHR1-complemented (LHR1/Δlhr1 plus LHR1) L. amazonensis strains. LHR1/Δlhr1 promastigotes replicated poorly in heme-deficient media and had lower intracellular heme content than wild-type parasites. LHR1/Δlhr1 promastigotes were also less effective in reducing ferric iron to ferrous iron, a reaction mediated by the heme-containing parasite enzyme LFR1 (Leishmania Ferric Reductase 1). LHR1/Δlhr1 parasites differentiated normally into aflagellated forms expressing amastigote-specific markers but were not able to replicate intracellularly after infecting macrophages. Importantly, the intracellular growth of LHR1/Δlhr1 amastigotes was fully restored when macrophages were allowed to phagocytose red blood cells prior to infection. LHR1/Δlhr1 parasites were also severely defective in the development of cutaneous lesions in mice. All phenotypes observed in LHR1/Δlhr1 L. amazonensis were rescued by expression of episomal LHR1. Our results reveal the importance of efficient heme uptake for L. amazonensis replication and vertebrate host infectivity, reinforcing the potential usefulness of LHR1 as a target for new antileishmanial drugs.


Asunto(s)
Hemo/metabolismo , Leishmania/patogenicidad , Macrófagos/parasitología , Proteínas Protozoarias/metabolismo , Animales , Eliminación de Gen , Leishmania/clasificación , Ratones , Proteínas Protozoarias/genética , Virulencia
10.
Cell Microbiol ; 15(6): 977-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23241026

RESUMEN

The protozoan parasite Trypanosoma cruzi, the aetiological agent of Chagas' disease, has two infective life cycle stages, trypomastigotes and amastigotes. While trypomastigotes actively enter mammalian cells, highly infective extracellular amastigotes (type I T. cruzi) rely on actin-mediated uptake, which is generally inefficient in non-professional phagocytes. We found that extracellular amastigotes (EAs) of T. cruzi G strain (type I), but not Y strain (type II), were taken up 100-fold more efficiently than inert particles. Mammalian cell lines showed levels of parasite uptake comparable to macrophages, and extensive actin recruitment and polymerization was observed at the site of entry. EA uptake was not dependent on parasite-secreted molecules and required the same molecular machinery utilized by professional phagocytes during large particle phagocytosis. Transcriptional silencing of synaptotagmin VII and CD63 significantly inhibited EA internalization, demonstrating that delivery of supplemental lysosomal membrane to form the phagosome is involved in parasite uptake. Importantly, time-lapse live imaging using fluorescent reporters revealed phagosome-associated modulation of phosphoinositide metabolism during EA uptake that closely resembles what occurs during phagocytosis by macrophages. Collectively, our results demonstrate that T. cruzi EAs are potent inducers of phagocytosis in non-professional phagocytes, a process that may facilitate parasite persistence in infected hosts.


Asunto(s)
Enfermedad de Chagas/fisiopatología , Células HeLa/parasitología , Estadios del Ciclo de Vida/fisiología , Fagocitosis/fisiología , Trypanosoma cruzi/crecimiento & desarrollo , Actinas/metabolismo , Animales , Enfermedad de Chagas/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Fosfatidilinositoles/metabolismo , Sinaptotagminas/metabolismo , Tetraspanina 30/metabolismo , Trypanosoma cruzi/patogenicidad
11.
J Biol Chem ; 286(26): 23266-79, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21558274

RESUMEN

The protozoan parasite Leishmania is the causative agent of serious human infections worldwide. The parasites alternate between insect and vertebrate hosts and cause disease by invading macrophages, where they replicate. Parasites lacking the ferrous iron transporter LIT1 cannot grow intracellularly, indicating that a plasma membrane-associated mechanism for iron uptake is essential for the establishment of infections. Here, we identify and functionally characterize a second member of the Leishmania iron acquisition pathway, the ferric iron reductase LFR1. The LFR1 gene is up-regulated under iron deprivation and accounts for all the detectable ferric reductase activity exposed on the surface of Leishmania amazonensis. LFR1 null mutants grow normally as promastigote insect stages but are defective in differentiation into the vertebrate infective forms, metacyclic promastigotes and amastigotes. LFR1 overexpression partially restores the abnormal morphology of infective stages but markedly reduces parasite viability, precluding its ability to rescue LFR1 null replication in macrophages. However, LFR1 overexpression is not toxic for amastigotes lacking the ferrous iron transporter LIT1 and rescues their growth defect. In addition, the intracellular growth of both LFR1 and LIT1 null parasites is rescued in macrophages loaded with exogenous iron. This indicates that the Fe(3+) reductase LFR1 functions upstream of LIT1 and suggests that LFR1 overexpression results in excessive Fe(2+) production, which impairs parasite viability after intracellular transport by LIT1.


Asunto(s)
FMN Reductasa/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Hierro/metabolismo , Leishmania/enzimología , Leishmania/patogenicidad , Leishmaniasis/enzimología , Proteínas Protozoarias/biosíntesis , Secuencia de Aminoácidos , Animales , Células Cultivadas , FMN Reductasa/genética , Humanos , Leishmania/genética , Leishmaniasis/genética , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas Protozoarias/genética
12.
J Exp Med ; 208(5): 909-21, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21536739

RESUMEN

Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca(2+) transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves Ca(2+)-dependent exocytosis of lysosomes, delivery of acid sphingomyelinase (ASM) to the outer leaflet of the plasma membrane, and a rapid form of endocytosis that internalizes membrane lesions. Host cells incubated with T. cruzi trypomastigotes are transiently wounded, show increased levels of endocytosis, and become more susceptible to infection when injured with pore-forming toxins. Inhibition or depletion of lysosomal ASM, which blocks plasma membrane repair, markedly reduces the susceptibility of host cells to T. cruzi invasion. Notably, extracellular addition of sphingomyelinase stimulates host cell endocytosis, enhances T. cruzi invasion, and restores normal invasion levels in ASM-depleted cells. Ceramide, the product of sphingomyelin hydrolysis, is detected in newly formed parasitophorous vacuoles containing trypomastigotes but not in the few parasite-containing vacuoles formed in ASM-depleted cells. Thus, T. cruzi subverts the ASM-dependent ceramide-enriched endosomes that function in plasma membrane repair to infect host cells.


Asunto(s)
Membrana Celular/enzimología , Enfermedad de Chagas/metabolismo , Endocitosis , Esfingomielina Fosfodiesterasa/metabolismo , Trypanosoma cruzi/metabolismo , Calcio/metabolismo , Membrana Celular/genética , Ceramidas/genética , Ceramidas/metabolismo , Enfermedad de Chagas/patología , Exocitosis/genética , Células HeLa , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/patología , Esfingomielina Fosfodiesterasa/genética , Esfingomielinas/genética , Esfingomielinas/metabolismo
13.
J Cell Biol ; 191(3): 599-613, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21041449

RESUMEN

Syt VII is a Ca(2+) sensor that regulates lysosome exocytosis and plasma membrane repair. Because it lacks motifs that mediate lysosomal targeting, it is unclear how Syt VII traffics to these organelles. In this paper, we show that mutations or inhibitors that abolish palmitoylation disrupt Syt VII targeting to lysosomes, causing its retention in the Golgi complex. In macrophages, Syt VII is translocated simultaneously with the lysosomal tetraspanin CD63 from tubular lysosomes to nascent phagosomes in a Ca(2+)-dependent process that facilitates particle uptake. Mutations in Syt VII palmitoylation sites block trafficking of Syt VII, but not CD63, to lysosomes and phagosomes, whereas tyrosine replacement in the lysosomal targeting motif of CD63 causes both proteins to accumulate on the plasma membrane. Complexes of CD63 and Syt VII are detected only when Syt VII palmitoylation sites are intact. These findings identify palmitoylation-dependent association with the tetraspanin CD63 as the mechanism by which Syt VII is targeted to lysosomes.


Asunto(s)
Antígenos CD/metabolismo , Calcio/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Sinaptotagminas/metabolismo , Animales , Células Cultivadas , Lipoilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinaptotagminas/deficiencia , Sinaptotagminas/genética , Tetraspanina 30
14.
J Biol Chem ; 283(43): 29099-108, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18708638

RESUMEN

The yeast Saccharomyces cerevisiae vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying intracellular organelles and is highly regulated. One of the regulatory subunits, subunit H, is encoded by the VMA13 gene in yeast and is composed of two domains, the N-terminal domain (amino acids (aa) 1-352) and the C-terminal domain (aa 353-478). The N-terminal domain is required for the activation of the complex, whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation (Liu, M., Tarsio, M., Charsky, C. M., and Kane, P. M. (2005) J. Biol. Chem. 280, 36978-36985). Experiments with epitope-tagged copies of Vma13p revealed that there is only one copy of Vma13p/subunit H per V-ATPase complex. Analysis of the N-terminal domain shows that the first 179 amino acids are not required for the activation and full function of the V-ATPase complex and that the minimal region of Vma13p/subunit H capable of activating the V-ATPase is aa 180-353 of the N-terminal domain. Subunit H is expressed as two splice variants in mammals, and deletion of 18 amino acids in yeast Vma13p corresponding to the mammalian subunit H beta isoform results in reduced V-ATPase activity and significantly lower coupling of ATPase hydrolysis to proton translocation. Intriguingly, the yeast Vma13p mimicking the mammalian subunit H beta isoform is functionally equivalent to Vma13p lacking the entire C-terminal domain. These results suggest that the mammalian V-ATPase complexes with subunit H splice variant SFD-alpha or SFD-beta are likely to have different activities and may perform distinct cellular functions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Bioquímica/métodos , Epítopos/química , Concentración de Iones de Hidrógeno , Hidrólisis , Modelos Biológicos , Conformación Molecular , Datos de Secuencia Molecular , Plásmidos/metabolismo , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína
15.
J Biol Chem ; 281(42): 32025-35, 2006 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-16926153

RESUMEN

Deletion of the yeast gene PKR1 (YMR123W) results in an inability to grow on iron-limited medium. Pkr1p is localized to the membrane of the endoplasmic reticulum. Cells lacking Pkr1p show reduced levels of the V-ATPase subunit Vph1p due to increased turnover of the protein in mutant cells. Reduced levels of the V-ATPase lead to defective copper loading of Fet3p, a component of the high affinity iron transport system. Levels of Vph1p in cells lacking Pkr1p are similar to cells unable to assemble a functional V-ATPase due to lack of a V0 subunit or an endoplasmic reticulum (ER) assembly factor. However, unlike yeast mutants lacking a V0 subunit or a V-ATPase assembly factor, low levels of Vph1p present in cells lacking Pkr1p are assembled into a V-ATPase complex, which exits the ER and is present on the vacuolar membrane. The V-ATPase assembled in the absence of Pkr1p is fully functional because the mutant cells are able to weakly acidify their vacuoles. Finally, overexpression of the V-ATPase assembly factor Vma21p suppresses the growth and acidification defects of pkr1Delta cells. Our data indicate that Pkr1p functions together with the other V-ATPase assembly factors in the ER to efficiently assemble the V-ATPase membrane sector.


Asunto(s)
Proteínas Fúngicas/química , Proteínas de la Membrana/química , Proteínas de Saccharomyces cerevisiae/química , ATPasas de Translocación de Protón Vacuolares/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/fisiología , Chaperonas Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo
16.
Proc Natl Acad Sci U S A ; 103(16): 6202-7, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16601096

RESUMEN

Previous two-hybrid analysis of the 17 soluble class E Vps yeast proteins revealed that Vps46p/Did2p interacts with Vta1p and the AAA (ATPase associated with a variety of cellular activities) ATPase Vps4p. Here we report that the binding of Vps46p to Vps4p and Vta1p is direct and not mediated by additional proteins, and the binding of Vps46p to Vps4p is ATP independent. Vps46p regulates the membrane association of Vps4p and is required for the interaction of Vta1p with Vps32p/Snf7p of the ESCRT-III complex. Vta1p is a potent activator of Vps4p, stimulating the ATPase activity by 6- to 8-fold. These results reveal functional roles for the Vps46p and Vta1p proteins in regulating the ESCRT complex assembly/disassembly cycle in protein sorting at the yeast late endosome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Modelos Biológicos , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
17.
J Biol Chem ; 279(38): 39856-62, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15252052

RESUMEN

The vacuolar ATPase (V-ATPase) is a multisubunit enzyme that acidifies intracellular organelles in eukaryotes. Similar to the F-type ATP synthase (FATPase), the V-ATPase is composed of two subcomplexes, V(1) and V(0). Hydrolysis of ATP in the V(1) subcomplex is tightly coupled to proton translocation accomplished by the V(0) subcomplex, which is composed of five unique subunits (a, d, c, c', and c"). Three of the subunits, subunit c (Vma3p), c' (Vma11p), and c" (Vma16p), are small highly hydrophobic integral membrane proteins called "proteolipids" that share sequence similarity to the F-ATPase subunit c. Whereas subunit c from the F-ATPase spans the membrane bilayer twice, the V-ATPase proteolipids have been modeled to have at least four transmembrane-spanning helices. Limited proteolysis experiments with epitope-tagged copies of the proteolipids have revealed that the N and the C termini of c (Vma3p) and c' (Vma11p) were in the lumen of the vacuole. Limited proteolysis of epitope-tagged c" (Vma16p) indicated that the N terminus is located on the cytoplasmic face of the vacuole, whereas the C terminus is located within the vacuole. Furthermore, a chimeric fusion between Vma16p and Vma3p, Vma16-Vma3p, was found to assemble into a fully functional V-ATPase complex, further supporting the conclusion that the C terminus of Vma16p resides within the lumen of the vacuole. These results indicate that subunits c and c' have four transmembrane segments with their N and C termini in the lumen and that c" has five transmembrane segments, with the N terminus exposed to the cytosol and the C terminus lumenal.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo , Citosol/enzimología , Estructura Terciaria de Proteína , Proteolípidos/química , Proteolípidos/metabolismo , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Vacuolas/enzimología
18.
J Bioenerg Biomembr ; 35(4): 301-12, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14635776

RESUMEN

The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/biosíntesis , ATPasas de Translocación de Protón Vacuolares/química , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas Fúngicas , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/química , ATPasas de Translocación de Protón Vacuolares/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...