Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuro Oncol ; 25(2): 248-260, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35608632

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly lethal malignancy for which neoangiogenesis serves as a defining hallmark. The anti-VEGF antibody, bevacizumab, has been approved for the treatment of recurrent GBM, but resistance is universal. METHODS: We analyzed expression data of GBM patients treated with bevacizumab to discover potential resistance mechanisms. Patient-derived xenografts (PDXs) and cultures were interrogated for effects of phosphofructokinase-1, muscle isoform (PFKM) loss on tumor cell motility, migration, and invasion through genetic and pharmacologic targeting. RESULTS: We identified PFKM as a driver of bevacizumab resistance. PFKM functions dichotomize based on subcellular location: cytosolic PFKM interacted with KIF11, a tubular motor protein, to promote tumor invasion, whereas nuclear PFKM safeguarded genomic stability of tumor cells through interaction with NBS1. Leveraging differential transcriptional profiling, bupivacaine phenocopied genetic targeting of PFKM, and enhanced efficacy of bevacizumab in preclinical GBM models in vivo. CONCLUSION: PFKM drives novel molecular pathways in GBM, offering a translational path to a novel therapeutic paradigm.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Fosfofructoquinasa-1 , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo
2.
Cancer Res Commun ; 2(6): 402-416, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36688010

RESUMEN

The emergence of treatment resistance significantly reduces the clinical utility of many effective targeted therapies. Although both genetic and epigenetic mechanisms of drug resistance have been reported, whether these mechanisms are stochastically selected in individual tumors or governed by a predictable underlying principle is unknown. Here, we report that the dependence of cancer stem cells (CSCs), not bulk tumor cells, on the targeted pathway determines the molecular mechanism of resistance in individual tumors. Using both spontaneous and transplantable mouse models of sonic hedgehog (SHH) medulloblastoma (MB) treated with an SHH/Smoothened inhibitor, sonidegib/LDE225, we show that genetic-based resistance occurs only in tumors that contain SHH-dependent CSCs (SD-CSCs). In contrast, SHH MBs containing SHH-dependent bulk tumor cells but SHH-independent CSCs (SI-CSCs) acquire resistance through epigenetic reprogramming. Mechanistically, elevated proteasome activity in SMOi-resistant SI-CSC MBs alters the tumor cell maturation trajectory through enhanced degradation of specific epigenetic regulators, including histone acetylation machinery components, resulting in global reductions in H3K9Ac, H3K14Ac, H3K56Ac, H4K5Ac, and H4K8Ac marks and gene expression changes. These results provide new insights into how selective pressure on distinct tumor cell populations contributes to different mechanisms of resistance to targeted therapies. This insight provides a new conceptual framework to understand responses and resistance to SMOis and other targeted therapies.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Ratones , Transducción de Señal , Proteínas Hedgehog/genética , Meduloblastoma/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Células Madre Neoplásicas/metabolismo
3.
Cell Adh Migr ; 15(1): 101-115, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843470

RESUMEN

The multifaceted roles of metabolism in invasion have been investigated across many cancers. The brain tumor glioblastoma (GBM) is a highly invasive and metabolically plastic tumor with an inevitable recurrence. The neuronal glucose transporter 3 (GLUT3) was previously reported to correlate with poor glioma patient survival and be upregulated in GBM cells to promote therapeutic resistance and survival under restricted glucose conditions. It has been suggested that the increased glucose uptake mediated by GLUT3 elevation promotes survival of circulating tumor cells to facilitate metastasis. Here we suggest a more direct role for GLUT3 in promoting invasion that is not dependent upon changes in cell survival or metabolism. Analysis of glioma datasets demonstrated that GLUT3, but not GLUT1, expression was elevated in invasive disease. In human xenograft derived GBM cells, GLUT3, but not GLUT1, elevation significantly increased invasion in transwell assays, but not growth or migration. Further, there were no changes in glycolytic metabolism that correlated with invasive phenotypes. We identified the GLUT3 C-terminus as mediating invasion: substituting the C-terminus of GLUT1 for that of GLUT3 reduced invasion. RNA-seq analysis indicated changes in extracellular matrix organization in GLUT3 overexpressing cells, including upregulation of osteopontin. Together, our data suggest a role for GLUT3 in increasing tumor cell invasion that is not recapitulated by GLUT1, is separate from its role in metabolism and survival as a glucose transporter, and is likely broadly applicable since GLUT3 expression correlates with metastasis in many solid tumors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/genética , Humanos , Proteínas del Tejido Nervioso/metabolismo , Osteopontina/metabolismo , RNA-Seq
4.
Biochem Soc Trans ; 48(4): 1609-1621, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32794546

RESUMEN

Epigenetic processes converge on chromatin in order to direct a cell's gene expression profile. This includes both maintaining a stable cell identity, but also priming the cell for specific controlled transitions, such as differentiation or response to stimuli. In cancer, this normally tight control is often disrupted, leading to a wide scale hyper-plasticity of the epigenome and allowing stochastic gene activation and silencing, cell state transition, and potentiation of the effects of genetic lesions. Many of these epigenetic disruptions will confer a proliferative advantage to cells, allowing for a selection process to occur and leading to tumorigenesis even in the case of reversible or unstable epigenetic states. This review seeks to highlight how the fundamental epigenetic shifts in cancer contribute to tumorigenesis, and how understanding an integrated view of cancer genetics and epigenetics may more effectively guide research and treatment.


Asunto(s)
Carcinogénesis/genética , Epigénesis Genética , Selección Genética , Metilación de ADN , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Procesos Estocásticos
5.
Nature ; 575(7781): 229-233, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666694

RESUMEN

Epigenetic aberrations are widespread in cancer, yet the underlying mechanisms and causality remain poorly understood1-3. A subset of gastrointestinal stromal tumours (GISTs) lack canonical kinase mutations but instead have succinate dehydrogenase (SDH) deficiency and global DNA hyper-methylation4,5. Here, we associate this hyper-methylation with changes in genome topology that activate oncogenic programs. To investigate epigenetic alterations systematically, we mapped DNA methylation, CTCF insulators, enhancers, and chromosome topology in KIT-mutant, PDGFRA-mutant and SDH-deficient GISTs. Although these respective subtypes shared similar enhancer landscapes, we identified hundreds of putative insulators where DNA methylation replaced CTCF binding in SDH-deficient GISTs. We focused on a disrupted insulator that normally partitions a core GIST super-enhancer from the FGF4 oncogene. Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs, allowing aberrant physical interaction between enhancer and oncogene. CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST model disrupted the boundary between enhancer and oncogene, and strongly upregulated FGF4 expression. We also identified a second recurrent insulator loss event near the KIT oncogene, which is also highly expressed across SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX) from an SDH-deficient GIST that faithfully maintains the epigenetics of the parental tumour, including hypermethylation and insulator defects. This PDX model is highly sensitive to FGF receptor (FGFR) inhibition, and more so to combined FGFR and KIT inhibition, validating the functional significance of the underlying epigenetic lesions. Our study reveals how epigenetic alterations can drive oncogenic programs in the absence of canonical kinase mutations, with implications for mechanistic targeting of aberrant pathways in cancers.


Asunto(s)
Carcinogénesis/genética , Aberraciones Cromosómicas , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Oncogenes/genética , Succinato Deshidrogenasa/deficiencia , Animales , Sistemas CRISPR-Cas/genética , Metilación de ADN , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Factor 4 de Crecimiento de Fibroblastos/genética , Tumores del Estroma Gastrointestinal/enzimología , Humanos , Ratones , Mutación , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Succinato Deshidrogenasa/genética
6.
Nat Commun ; 10(1): 4258, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534142

RESUMEN

The human genome is folded into regulatory units termed 'topologically-associated domains' (TADs). Genome-wide studies support a global role for the insulator protein CTCF in mediating chromosomal looping and the topological constraint of TAD boundaries. However, the impact of individual insulators on enhancer-gene interactions and transcription remains poorly understood. Here, we investigate epigenome editing strategies for perturbing individual CTCF insulators and evaluating consequent effects on genome topology and transcription. We show that fusions of catalytically-inactive Cas9 (dCas9) to transcriptional repressors (dCas9-KRAB) and DNA methyltransferases (dCas9-DNMT3A, dCas9-DNMT3A3L) can selectively displace CTCF from specific insulators, but only when precisely targeted to the cognate motif. We further demonstrate that stable, partially-heritable insulator disruption can be achieved through combinatorial hit-and-run epigenome editing. Finally, we apply these strategies to simulate an insulator loss mechanism implicated in brain tumorigenesis. Our study provides strategies for stably modifying genome organization and gene activity without altering the underlying DNA sequence.


Asunto(s)
Factor de Unión a CCCTC/genética , Proteína 9 Asociada a CRISPR/genética , Carcinogénesis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Edición Génica/métodos , Proteínas Recombinantes de Fusión/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Sistemas CRISPR-Cas/genética , Carcinogénesis/patología , Línea Celular , Metilación de ADN , ADN Metiltransferasa 3A , Epigénesis Genética/genética , Genoma Humano/genética , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo
7.
Science ; 357(6348)2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28729483

RESUMEN

Chromatin and associated epigenetic mechanisms stabilize gene expression and cellular states while also facilitating appropriate responses to developmental or environmental cues. Genetic, environmental, or metabolic insults can induce overly restrictive or overly permissive epigenetic landscapes that contribute to pathogenesis of cancer and other diseases. Restrictive chromatin states may prevent appropriate induction of tumor suppressor programs or block differentiation. By contrast, permissive or "plastic" states may allow stochastic oncogene activation or nonphysiologic cell fate transitions. Whereas many stochastic events will be inconsequential "passengers," some will confer a fitness advantage to a cell and be selected as "drivers." We review the broad roles played by epigenetic aberrations in tumor initiation and evolution and their potential to give rise to all classic hallmarks of cancer.


Asunto(s)
Carcinogénesis/genética , Cromatina/metabolismo , Epigénesis Genética , Neoplasias/genética , Oncogenes , Cromatina/química , Metilación de ADN , Humanos
8.
Nature ; 547(7663): 355-359, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28678782

RESUMEN

Glioblastoma is a universally lethal cancer with a median survival time of approximately 15 months. Despite substantial efforts to define druggable targets, there are no therapeutic options that notably extend the lifespan of patients with glioblastoma. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology for use in orthotopic patient-derived xenograft models, creating a high-throughput negative-selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators needed for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies, and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, suggesting that targeting transcription elongation machinery may be an effective therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of 'cancer dependencies' not identified by previous in vitro approaches, and could supply new opportunities for therapeutic intervention.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Terapia Molecular Dirigida/tendencias , Factores de Elongación Transcripcional/antagonistas & inhibidores , Factores de Elongación Transcripcional/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Ratones , Interferencia de ARN , Transcripción Genética , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Neurosci ; 20(5): 661-673, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28346452

RESUMEN

Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.


Asunto(s)
Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Purinas/biosíntesis , Adenosina Monofosfato/biosíntesis , Proliferación Celular/fisiología , Células Cultivadas , Genómica , Glioma/enzimología , Glioma/metabolismo , Glucólisis/fisiología , Guanosina Monofosfato/biosíntesis , Humanos , Metabolómica , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/fisiología , Ribosa-Fosfato Pirofosfoquinasa/biosíntesis , Regulación hacia Arriba
10.
Cell Stem Cell ; 20(2): 233-246.e7, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-27989769

RESUMEN

Glioblastoma, the most common and aggressive malignant brain tumor, is propagated by stem-like cancer cells refractory to existing therapies. Understanding the molecular mechanisms that control glioblastoma stem cell (GSC) proliferation and drug resistance may reveal opportunities for therapeutic interventions. Here we show that GSCs can reversibly transition to a slow-cycling, persistent state in response to targeted kinase inhibitors. In this state, GSCs upregulate primitive developmental programs and are dependent upon Notch signaling. This transition is accompanied by widespread redistribution of repressive histone methylation. Accordingly, persister GSCs upregulate, and are dependent on, the histone demethylases KDM6A/B. Slow-cycling cells with high Notch activity and histone demethylase expression are present in primary glioblastomas before treatment, potentially contributing to relapse. Our findings illustrate how cancer cells may hijack aspects of native developmental programs for deranged proliferation, adaptation, and tolerance. They also suggest strategies for eliminating refractory tumor cells by targeting epigenetic and developmental pathways.


Asunto(s)
Ensamble y Desensamble de Cromatina , Resistencia a Antineoplásicos , Glioblastoma/patología , Células Madre Neoplásicas/patología , Acetilación/efectos de los fármacos , Secuencia de Bases , Biomarcadores de Tumor/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Glioblastoma/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Metilación/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
11.
Stem Cells ; 34(8): 2026-39, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27145382

RESUMEN

Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Evasión Inmune , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Arginasa/metabolismo , Neoplasias Encefálicas/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Femenino , Glioblastoma/patología , Humanos , Evasión Inmune/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Desnudos , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Microambiente Tumoral/efectos de los fármacos
12.
Neuro Oncol ; 18(5): 656-66, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26374689

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) provide an additional layer of complexity for tumor models and targets for therapeutic development. The balance between CSC self-renewal and differentiation is driven by niche components including adhesion, which is a hallmark of stemness. While studies have demonstrated that the reduction of adhesion molecules, such as integrins and junctional adhesion molecule-A (JAM-A), decreases CSC maintenance. The molecular circuitry underlying these interactions has yet to be resolved. METHODS: MicroRNA screening predicted that microRNA-145 (miR-145) would bind to JAM-A. JAM-A overexpression in CSCs was evaluated both in vitro (proliferation and self-renewal) and in vivo (intracranial tumor initiation). miR-145 introduction into CSCs was similarly assessed in vitro. Additionally, The Cancer Genome Atlas dataset was evaluated for expression levels of miR-145 and overall survival of the different molecular groups. RESULTS: Using patient-derived glioblastoma CSCs, we confirmed that JAM-A is suppressed by miR-145. CSCs expressed low levels of miR-145, and its introduction decreased self-renewal through reductions in AKT signaling and stem cell marker (SOX2, OCT4, and NANOG) expression; JAM-A overexpression rescued these effects. These findings were predictive of patient survival, with a JAM-A/miR-145 signature robustly predicting poor patient prognosis. CONCLUSIONS: Our results link CSC-specific niche signaling to a microRNA regulatory network that is altered in glioblastoma and can be targeted to attenuate CSC self-renewal.


Asunto(s)
Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular/metabolismo , Adhesión Celular/fisiología , Glioblastoma/patología , MicroARNs/metabolismo , Células Madre Neoplásicas/patología , Receptores de Superficie Celular/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Xenoinjertos , Humanos , Immunoblotting , Ratones , Células Madre Neoplásicas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Células Tumorales Cultivadas
13.
Nature ; 529(7584): 110-4, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26700815

RESUMEN

Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glioma/enzimología , Glioma/genética , Elementos Aisladores/genética , Isocitrato Deshidrogenasa/genética , Mutación/genética , Oncogenes/genética , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Células Cultivadas , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/patología , Glutaratos/metabolismo , Humanos , Elementos Aisladores/efectos de los fármacos , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Fenotipo , Unión Proteica , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Represoras/metabolismo , Regulación hacia Arriba , Cohesinas
14.
Cancer Cell ; 28(4): 441-455, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26461092

RESUMEN

Glioblastomas display hierarchies with self-renewing cancer stem-like cells (CSCs). RNA sequencing and enhancer mapping revealed regulatory programs unique to CSCs causing upregulation of the iron transporter transferrin, the top differentially expressed gene compared with tissue-specific progenitors. Direct interrogation of iron uptake demonstrated that CSCs potently extract iron from the microenvironment more effectively than other tumor cells. Systematic interrogation of iron flux determined that CSCs preferentially require transferrin receptor and ferritin, two core iron regulators, to propagate and form tumors in vivo. Depleting ferritin disrupted CSC mitotic progression, through the STAT3-FoxM1 regulatory axis, revealing an iron-regulated CSC pathway. Iron is a unique, primordial metal fundamental for earliest life forms, on which CSCs have an epigenetically programmed, targetable dependence.


Asunto(s)
Neoplasias Encefálicas/patología , Ferritinas/metabolismo , Glioblastoma/patología , Hierro/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores de Transferrina/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Células Cultivadas , Células Madre Embrionarias , Epigénesis Genética , Ferritinas/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Receptores de Transferrina/genética , Análisis de Secuencia de ARN , Transducción de Señal , Transferrina/metabolismo
15.
Oncotarget ; 6(15): 13241-54, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25938542

RESUMEN

Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes-FOXM1 and p21CIP1/WAF1-elucidating a potential point for therapeutic intervention.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteínas Cdc20/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Western Blotting , Neoplasias Encefálicas/patología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Inmunoprecipitación de Cromatina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/metabolismo , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Células Tumorales Cultivadas
16.
Cell Rep ; 11(7): 1031-42, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25959821

RESUMEN

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Asunto(s)
Neoplasias Encefálicas/patología , Conexina 43/metabolismo , Conexinas/metabolismo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Animales , Comunicación Celular/fisiología , Técnica del Anticuerpo Fluorescente , Uniones Comunicantes/metabolismo , Glioblastoma/metabolismo , Xenoinjertos , Humanos , Immunoblotting , Potenciales de la Membrana/fisiología , Células Madre Neoplásicas/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa
17.
Nat Neurosci ; 18(4): 501-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25730670

RESUMEN

Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.


Asunto(s)
Neoplasias Encefálicas/metabolismo , GTP Fosfohidrolasas/metabolismo , Glioblastoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Células Madre Neoplásicas/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Dinaminas , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Mitocondrias/ultraestructura , Proteínas Mitocondriales/antagonistas & inhibidores , Células Madre Neoplásicas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Pronóstico
18.
Nat Cell Biol ; 17(2): 170-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25580734

RESUMEN

Tumour-associated macrophages (TAMs) are enriched in glioblastoma multiformes (GBMs) that contain glioma stem cells (GSCs) at the apex of their cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role for TAMs in tumour progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumour growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumour-supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through the integrin αvß3 as blocking this signalling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/sangre , Recuento de Células , Línea Celular Tumoral , Proliferación Celular , Factores Quimiotácticos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Glioblastoma/sangre , Humanos , Integrina alfaVbeta3/metabolismo , Mediciones Luminiscentes , Ratones Endogámicos C57BL , Monocitos/metabolismo , Células Madre Neoplásicas/patología , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cell Stem Cell ; 15(2): 114-6, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25105574

RESUMEN

In this issue of Cell Stem Cell, Zhu et al. (2014) demonstrate that a genetically engineered glioma model displays a functional cellular hierarchy defined by expression of the nuclear orphan receptor Tlx. Targeting cancer stem cells through genetic deletion of TLX promotes cancer stem cell death and differentiation and extends survival.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Células Madre Neoplásicas/patología , Animales , Humanos
20.
Glia ; 62(10): 1687-98, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24909307

RESUMEN

Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and ß3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.


Asunto(s)
Neoplasias Encefálicas/terapia , Carcinogénesis/metabolismo , Glioblastoma/terapia , Terapia Molecular Dirigida/métodos , Células Madre Neoplásicas/fisiología , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/fisiopatología , Carcinogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Vectores Genéticos , Glioblastoma/fisiopatología , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Proteínas Represoras/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Temozolomida , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA