Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Food ; 3(5): 318-324, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-37117579

RESUMEN

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.

3.
Cell Rep ; 20(4): 794-805, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28746866

RESUMEN

Inflammasomes are multimeric protein complexes that initiate inflammatory cascades. Their activation is a hallmark of many infectious or inflammatory diseases. Their composition and activity are specified by proinflammatory stimuli. For example, the NLRP3 inflammasome is activated in response to cell damage and K+ efflux, whereas the AIM2 inflammasome is activated in response to cytosolic DNA. We used Legionella pneumophila, an intracellular bacterial pathogen that activates multiple inflammasomes, to elucidate the molecular mechanisms regulating inflammasome activation during infection. Upon infection, the AIM2 inflammasome engaged caspase-1 to induce pore formation in the cell membrane, which then caused K+-efflux-mediated activation of NLRP3. Thus, the AIM2 inflammasome amplifies signals of infection, triggering noncanonical activation of NLRP3. During infection, AIM2 and caspase-11 induced membrane damage, which was sufficient and essential for activating the NLRP3 inflammasome. Our data reveal that different inflammasomes regulate one another's activity to ensure an effective immune response to infection.


Asunto(s)
Caspasa 1/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Caspasa 1/genética , Caspasas/metabolismo , Caspasas Iniciadoras , Proteínas de Unión al ADN/genética , Femenino , Flagelina/genética , Flagelina/metabolismo , Inflamasomas/genética , Inflamasomas/inmunología , Legionella pneumophila/inmunología , Legionella pneumophila/patogenicidad , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Potasio/metabolismo
4.
J Exp Med ; 213(7): 1223-39, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27325889

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease that is triggered by both genetic and environmental factors, resulting in the destruction of pancreatic ß cells. The disruption of the intestinal epithelial barrier and consequent escape of microbial products may be one of these environmental triggers. However, the immune receptors that are activated in this context remain elusive. We show here that during streptozotocin (STZ)-induced T1D, the nucleotide-binding oligomerization domain containing 2 (NOD2), but not NOD1, participates in the pathogenesis of the disease by inducing T helper 1 (Th1) and Th17 cells in the pancreatic LNs (PLNs) and pancreas. Additionally, STZ-injected wild-type (WT) diabetic mice displayed an altered gut microbiota compared with vehicle-injected WT mice, together with the translocation of bacteria to the PLNs. Interestingly, WT mice treated with broad-spectrum antibiotics (Abx) were fully protected from STZ-induced T1D, which correlated with the abrogation of bacterial translocation to the PLNs. Notably, when Abx-treated STZ-injected WT mice received the NOD2 ligand muramyl dipeptide, both hyperglycemia and the proinflammatory immune response were restored. Our results demonstrate that the recognition of bacterial products by NOD2 inside the PLNs contributes to T1D development, establishing a new putative target for intervention during the early stages of the disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Ganglios Linfáticos , Proteína Adaptadora de Señalización NOD2/inmunología , Páncreas , Animales , Traslocación Bacteriana/genética , Traslocación Bacteriana/inmunología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/microbiología , Diabetes Mellitus Tipo 1/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Noqueados , Proteína Adaptadora de Señalización NOD2/genética , Páncreas/inmunología , Páncreas/microbiología , Páncreas/patología
5.
Nat Med ; 19(7): 909-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749230

RESUMEN

Parasites of the Leishmania genus are the causative agents of leishmaniasis in humans, a disease that affects more than 12 million people worldwide. These parasites replicate intracellularly in macrophages, and the primary mechanisms underlying host resistance involve the production of nitric oxide (NO). In this study we show that the Nlrp3 inflammasome is activated in response to Leishmania infection and is important for the restriction of parasite replication both in macrophages and in vivo as demonstrated through the infection of inflammasome-deficient mice with Leishmania amazonensis, Leishmania braziliensis and Leishmania infantum chagasi. Inflammasome-driven interleukin-1ß (IL-1ß) production facilitated host resistance to infection, as signaling through IL-1 receptor (IL-1R) and MyD88 was necessary and sufficient to trigger inducible nitric oxide synthase (NOS2)-mediated production of NO. In this manuscript we identify a major signaling platform for host resistance to Leishmania spp. infection and describe the molecular mechanisms underlying Leishmania-induced NO production.


Asunto(s)
Resistencia a la Enfermedad/efectos de los fármacos , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Leishmania , Óxido Nítrico/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Proteínas Portadoras/genética , Caspasa 1/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Femenino , Leishmaniasis/genética , Leishmaniasis/inmunología , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Óxido Nítrico Sintasa de Tipo II/genética
6.
Microbes Infect ; 12(11): 819-27, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20685341

RESUMEN

The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases.


Asunto(s)
Legionella pneumophila/inmunología , Enfermedad de los Legionarios/inmunología , Pulmón/inmunología , Infiltración Neutrófila , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Noqueados , Proteína Adaptadora de Señalización NOD1/deficiencia , Proteína Adaptadora de Señalización NOD2/deficiencia , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Receptores de Reconocimiento de Patrones/inmunología , Factores de Virulencia/inmunología
7.
J Immunol ; 184(3): 1148-52, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20042586

RESUMEN

An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)-like receptor proteins in host response to T. cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappaB-dependent products in response to infection and failed to restrict T. cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T. cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T. cruzi infection by mechanisms independent of cytokine production.


Asunto(s)
Enfermedad de Chagas/inmunología , Inmunidad Innata , Proteína Adaptadora de Señalización NOD1/fisiología , Trypanosoma cruzi/inmunología , Animales , Enfermedad de Chagas/genética , Enfermedad de Chagas/metabolismo , Predisposición Genética a la Enfermedad , Inmunidad Innata/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/fisiología , Proteína Adaptadora de Señalización NOD1/deficiencia , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/deficiencia , Proteína Adaptadora de Señalización NOD2/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptores Toll-Like/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA