Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 57(16): 2349-2358, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28539047

RESUMEN

The cytosolic iron-sulfur cluster assembly (CIA) system assembles iron-sulfur (FeS) cluster cofactors and inserts them into >20 apoprotein targets residing in the cytosol and nucleus. Three CIA proteins, called Cia1, Cia2, and Met18 in yeast, form the targeting complex responsible for apo-target recognition. There is little information about the structure of this complex or its mechanism of CIA substrate recognition. Herein, we exploit affinity co-purification and size exclusion chromatography to determine the subunit connectivity and stoichiometry of the CIA targeting complex. We conclude that Cia2 is the organizing center of the targeting complex, which contains one Met18, two Cia1, and four Cia2 polypeptides. To probe target recognition specificity, we utilize the CIA substrates Leu1 and Rad3 as well as the Escherichia coli FeS-binding transcription factor FNR (fumerate nitrate reductase). We demonstrate that both of the yeast CIA substrates are recognized, whereas the bacterial protein is not. Thus, while the targeting complex exhibits flexible target recognition in vitro, it cannot promiscuously recognize any FeS protein. Additionally, we demonstrate that the full CIA targeting complex is required to stably bind Leu1 in vitro, whereas the Met18-Cia2 subcomplex is sufficient to recognize Rad3. Together, these results allow us to propose a unifying model for the architecture of this highly conserved complex and demonstrate what component or subcomplexes are vital for target identification.


Asunto(s)
Núcleo Celular/química , Citosol/química , Proteínas Hierro-Azufre/química , Mapas de Interacción de Proteínas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , ADN Helicasas/química , ADN Helicasas/genética , Hidroliasas/química , Hidroliasas/genética , Proteínas Hierro-Azufre/genética , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química , Factores de Transcripción/genética
2.
Metallomics ; 9(11): 1645-1654, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29057997

RESUMEN

The cytosolic iron-sulfur cluster assembly (CIA) system biosynthesizes iron-sulfur (FeS) cluster cofactors for cytosolic and nuclear proteins. The yeast Cia2 protein is the central component of the targeting complex which identifies apo-protein targets in the final step of the pathway. Herein, we determine that Cia2 contains five conserved motifs distributed between an intrinsically disordered N-terminal domain and a C-terminal domain of unknown function 59 (DUF59). The disordered domain is dispensible for binding the other subunits of the targeting complex, Met18 and Cia1, and the apo-target Rad3 in vitro. While in vivo assays reveal that the C-terminal domain is sufficient to support viability, several phenotypic assays indicate that deletion of the N-terminal domain negatively impacts CIA function. We additionally establish that Glu208, located within a conserved motif found only in eukaryotic DUF59 proteins, is important for the Cia1-Cia2 interaction in vitro. In vivo, E208A-Cia2 results in a diminished activity of the cytosolic iron sulfur cluster protein, Leu1 but only modest effects on hydroxyurea or methylmethane sulfonate sensitivity. Finally, we demonstrate that neither of the two highly conserved motifs of the DUF59 domain are vital for any of Cia2's interactions in vitro yet mutation of the DPE motif in the DUF59 domain results in a nonfunctional allele in vivo. Our observation that four of the five highly conserved motifs of Cia2 are dispensable for targeting complex formation and apo-target binding suggests that Cia2 is not simply a protein-protein interaction mediator but it likely possesses an additional, currently cryptic, function during the final cluster insertion step of CIA.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Citosol/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Mutación , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 290(39): 23793-802, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26195633

RESUMEN

Nbp35 and Cfd1 are prototypical members of the MRP/Nbp35 class of iron-sulfur (FeS) cluster scaffolds that function to assemble nascent FeS clusters for transfer to FeS-requiring enzymes. Both proteins contain a conserved NTPase domain that genetic studies have demonstrated is essential for their cluster assembly activity inside the cell. It was recently reported that these proteins possess no or very low nucleotide hydrolysis activity in vitro, and thus the role of the NTPase domain in cluster biogenesis has remained uncertain. We have reexamined the NTPase activity of Nbp35, Cfd1, and their complex. Using in vitro assays and site-directed mutagenesis, we demonstrate that the Nbp35 homodimer and the Nbp35-Cfd1 heterodimer are ATPases, whereas the Cfd1 homodimer exhibited no or very low ATPase activity. We ruled out the possibility that the observed ATP hydrolysis activity might result from a contaminating ATPase by showing that mutation of key active site residues reduced activity to background levels. Finally, we demonstrate that the fluorescent ATP analog 2'/3'-O-(N'-methylanthraniloyl)-ATP (mantATP) binds stoichiometrically to Nbp35 with a KD = 15.6 µM and that an Nbp35 mutant deficient in ATP hydrolysis activity also displays an increased KD for mantATP. Together, our results demonstrate that the cytosolic iron-sulfur cluster assembly scaffold is an ATPase and pave the way for interrogating the role of nucleotide hydrolysis in cluster biogenesis by this large family of cluster scaffolding proteins found across all domains of life.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Unión al GTP/química , Proteínas Hierro-Azufre/química , Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Multimerización de Proteína/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Protein Sci ; 23(8): 1060-76, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888348

RESUMEN

Pyridoxal-5'-phosphate or PLP, the active form of vitamin B6, is a highly versatile cofactor that participates in a large number of mechanistically diverse enzymatic reactions in basic metabolism. PLP-dependent enzymes account for ∼1.5% of most prokaryotic genomes and are estimated to be involved in ∼4% of all catalytic reactions, making this an important class of enzymes. Here, we structurally and functionally characterize three novel PLP-dependent enzymes from bacteria in the human microbiome: two are from Eubacterium rectale, a dominant, nonpathogenic, fecal, Gram-positive bacteria, and the third is from Porphyromonas gingivalis, which plays a major role in human periodontal disease. All adopt the Type I PLP-dependent enzyme fold and structure-guided biochemical analysis enabled functional assignments as tryptophan, aromatic, and probable phosphoserine aminotransferases.


Asunto(s)
Eubacterium/enzimología , Microbiota , Oxidorreductasas/metabolismo , Porphyromonas gingivalis/enzimología , Fosfato de Piridoxal/metabolismo , Transaminasas/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Oxidorreductasas/química , Conformación Proteica , Fosfato de Piridoxal/química , Transaminasas/química
5.
J Mol Biol ; 425(8): 1378-89, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23396064

RESUMEN

Identification of residues responsible for functional specificity in enzymes is a challenging and important problem in protein chemistry. Active-site residues are generally easy to identify, but residues outside the active site are also important to catalysis and their identities and roles are more difficult to determine. We report a method based on analysis of multiple sequence alignments, embodied in our program Janus, for predicting mutations required to interconvert structurally related but functionally distinct enzymes. Conversion of aspartate aminotransferase into tyrosine aminotransferase is demonstrated and compared to previous efforts. Incorporation of 35 predicted mutations resulted in an enzyme with the desired substrate specificity but low catalytic activity. A single round of DNA back-shuffling with wild-type aspartate aminotransferase on this variant generated mutants with tyrosine aminotransferase activities better than those previously realized from rational design or directed evolution. Methods such as this, coupled with computational modeling, may prove invaluable in furthering our understanding of enzyme catalysis and engineering.


Asunto(s)
Biología Computacional/métodos , Análisis Mutacional de ADN , Escherichia coli/enzimología , Mutación Missense , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Alineación de Secuencia , Especificidad por Sustrato , Tirosina Transaminasa/genética , Tirosina Transaminasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA