Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Future Med Chem ; 9(13): 1465-1481, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28795598

RESUMEN

AIM: DNA methyltransferases (DNMTs) are important drug targets for epigenetic therapy of cancer. Nowadays, non-nucleoside DNMT inhibitors are in development to address high toxicity of nucleoside analogs. However, these compounds still have low activity in cancer cells and mode of action of these compounds remains unclear. MATERIALS & METHODS: In this work, we studied maleimide derivatives of RG108 by biochemical, structural and computational approaches to highlight their inhibition mechanism on DNMTs. RESULTS: Findings demonstrated a correlation between cytotoxicity on mesothelioma cells of these compounds and their inhibitory potency against DNMTs. Noncovalent and covalent docking studies, supported by crystallographic (apo structure of M.HhaI) and differential scanning fluorimetry assays, provided detailed insights into their mode of action and revealed essential residues for the stabilization of such compounds inside DNMTs. [Formula: see text].


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Maleimidas/química , Ftalimidas/química , Triptófano/análogos & derivados , Animales , Apoenzimas/antagonistas & inhibidores , Apoenzimas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Fluorometría , Humanos , Concentración 50 Inhibidora , Ratones , Simulación del Acoplamiento Molecular , Ftalimidas/metabolismo , Ftalimidas/toxicidad , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Triptófano/química , Triptófano/metabolismo , Triptófano/toxicidad
3.
J Med Chem ; 60(11): 4665-4679, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28463515

RESUMEN

Aberrant DNA hypermethylation of promoter of tumor suppressor genes is commonly observed in cancer, and its inhibition by small molecules is promising for their reactivation. Here we designed bisubstrate analogues-based inhibitors, by mimicking each substrate, the S-adenosyl-l-methionine and the deoxycytidine, and linking them together. This approach resulted in quinazoline-quinoline derivatives as potent inhibitors of DNMT3A and DNMT1, some showing certain isoform selectivity. We highlighted the importance of (i) the nature and rigidity of the linker between the two moieties for inhibition, as (ii) the presence of the nitrogen on the quinoline group, and (iii) of a hydrophobic group on the quinazoline. The most potent inhibitors induced demethylation of CDKN2A promoter in colon carcinoma HCT116 cells and its reactivation after 7 days of treatment. Furthermore, in a leukemia cell model system, we found a correlation between demethylation of the promoter induced by the treatment, chromatin opening at the promoter, and the reactivation of a reporter gene.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Neoplasias/enzimología , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , ADN Metiltransferasa 3A , Genes Supresores de Tumor , Humanos , Neoplasias/patología , Especificidad por Sustrato
4.
BMC Cancer ; 16: 700, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581651

RESUMEN

BACKGROUND: In breast cancer, the epithelial to mesenchyme transition (EMT) is associated to tumour dissemination, drug resistance and high relapse risks. It is partly controlled by epigenetic modifications such as histone acetylation and methylation. The identification of genes involved in these reversible modifications represents an interesting therapeutic strategy to fight metastatic disease by inducing mesenchymal cell differentiation to an epithelial phenotype. METHODS: We designed a siRNA library based on chromatin modification-related to functional domains and screened it in the mesenchymal breast cancer cell line MDA-MB-231. The mesenchyme to epithelium transition (MET) activation was studied by following human E-CADHERIN (E-CAD) induction, a specific MET marker, and cell morphology. Candidate genes were validated by studying the expression of several differential marker genes and their impact on cell migration. RESULTS: The screen led to the identification of 70 gene candidates among which some are described to be, directly or indirectly, involved in EMT like ZEB1, G9a, SMAD5 and SMARCD3. We also identified the DOT1L as involved in EMT regulation in MDA-MB-231. Moreover, for the first time, KAT5 gene was linked to the maintenance of the mesenchymal phenotype. CONCLUSIONS: A multi-parametric RNAi screening approach was developed to identify new EMT regulators such as KAT5 in the triple negative breast cancer cell line MDA-MB-231.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal/genética , Interferencia de ARN , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Chemistry ; 22(19): 6676-86, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-27031925

RESUMEN

A series of 12 analogues of the Cer transfer protein (CERT) antagonist HPA-12 with long aliphatic chains were prepared as their (1R,3S)-syn and (1R,3R)-anti stereoisomers from pivotal chiral oxoamino acids. The enantioselective access to these intermediates as well as their ensuing transformation relied on a practical crystallization-induced asymmetric transformation (CIAT) process. Sonogashira coupling followed by triple bond reduction and thiophene ring hydrodesulfurization (HDS) into the corresponding alkane moieties was then implemented to complete the synthetic routes delivering the targeted HPA-12 analogues in concise 4- to 6-step reaction sequences. Ten compounds were evaluated regarding their ability to bind to the CERT START domain by using the recently developed time-resolved FRET-based homogeneous (HTR-FRET) binding assay. The introduction of a lipophilic appendage on the phenyl moiety led to an overall 10- to 1000-fold enhancement of the protein binding, with the highest effect being observed for a n-hexyl residue in the meta position. The importance of the phenyl ring for the activity was indicated by the reduced potency of the 3-deoxyphytoceramide aliphatic analogues. The 1,3-syn stereoisomers were systematically more potent than their 1,3-anti analogues. In silico studies were used to rationalized these trends, leading to a model of protein recognition coherent with the stronger binding of (1R,3S)-syn HPAs.


Asunto(s)
Amidas/química , Ceramidas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Tiofenos/química , Amidas/metabolismo , Transporte Biológico , Ceramidas/metabolismo , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 23(9): 2004-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25818765

RESUMEN

The first unified synthetic route to the four enantiopure HPA-12 stereoisomers in multi-gram scale is reported based on Crystallization-Induced Asymmetric Transformation (CIAT) technology. This preparative stereoselective synthesis allowed the unprecedented comparative evaluation of HPA-12 stereoisomers regarding their interaction with the CERT START domain. In vitro binding assay coupled to in silico docking approach indicate a possible interaction for the four derivatives. The first TR-FRET homogeneous-phase assay was developed to quantify their binding to the START domain, allowing complete determination of HPA-12 EC50. Results indicate that not only the (1R,3S) lead to the strongest binding, but that both 1R and 3S stereocenters similarly contribute to extent of recognition This automated homogenous assay further opens up promising prospect for the identification of novel potential CERT antagonist by means of high throughput screening.


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Amidas/química , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Conformación Molecular , Estereoisomerismo , Relación Estructura-Actividad
7.
J Biomol Screen ; 20(6): 779-87, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25716975

RESUMEN

Sphingomyelin (SM) metabolism deregulation was recently associated with cell metastasis and chemoresistance, and several pharmacological strategies targeting SM metabolism have emerged. The ceramide (Cer) generated in the endoplasmic reticulum (ER) is transferred to the Golgi apparatus to be transformed into SM. CERamide Transfer (CERT) protein is responsible for the nonvesicular trafficking of Cer to Golgi. Blocking the CERT-mediated ER-to-Golgi Cer transfer is an interesting antioncogenic therapeutic approach. Here, we developed a protein-lipid interaction assay for the identification of new CERT-Cer interaction inhibitors. Frequently used for protein-protein interaction by enzymatic and analyte dosage assays, homogeneous time-resolved fluorescence technology was adapted for the first time to a lipid-protein binding assay. This test was developed for high-throughput screening, and a library of 672 molecules was screened. Seven hits were identified, and their inhibitory effect quantified by EC50 measurements showed binding inhibition three orders of magnitude more potent than that of HPA12, the unique known CERT antagonist to date. Each compound was tested on an independent test, confirming its high affinity and pharmacological potential.


Asunto(s)
Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas Portadoras/química , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Cinética , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Transporte de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas
8.
J Biol Chem ; 290(10): 6293-302, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25525263

RESUMEN

Among the epigenetic marks, DNA methylation is one of the most studied. It is highly deregulated in numerous diseases, including cancer. Indeed, it has been shown that hypermethylation of tumor suppressor genes promoters is a common feature of cancer cells. Because DNA methylation is reversible, the DNA methyltransferases (DNMTs), responsible for this epigenetic mark, are considered promising therapeutic targets. Several molecules have been identified as DNMT inhibitors and, among the non-nucleoside inhibitors, 4-aminoquinoline-based inhibitors, such as SGI-1027 and its analogs, showed potent inhibitory activity. Here we characterized the in vitro mechanism of action of SGI-1027 and two analogs. Enzymatic competition studies with the DNA substrate and the methyl donor cofactor, S-adenosyl-l-methionine (AdoMet), displayed AdoMet non-competitive and DNA competitive behavior. In addition, deviations from the Michaelis-Menten model in DNA competition experiments suggested an interaction with DNA. Thus their ability to interact with DNA was established; although SGI-1027 was a weak DNA ligand, analog 5, the most potent inhibitor, strongly interacted with DNA. Finally, as 5 interacted with DNMT only when the DNA duplex was present, we hypothesize that this class of chemical compounds inhibit DNMTs by interacting with the DNA substrate.


Asunto(s)
Aminoquinolinas/química , ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN/genética , Inhibidores Enzimáticos/química , Pirimidinas/química , Aminoquinolinas/farmacología , ADN/química , ADN/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , Inhibidores Enzimáticos/uso terapéutico , Epigenómica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pirimidinas/farmacología
9.
PLoS Genet ; 9(4): e1003387, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637611

RESUMEN

Histone variants, including histone H2A.Z, are incorporated into specific genomic sites and participate in transcription regulation. The role of H2A.Z at these sites remains poorly characterized. Our study investigates changes in the chromatin environment at the Cyclin D1 gene (CCND1) during transcriptional initiation in response to estradiol in estrogen receptor positive mammary tumour cells. We show that H2A.Z is present at the transcription start-site and downstream enhancer sequences of CCND1 when the gene is poorly transcribed. Stimulation of CCND1 expression required release of H2A.Z concomitantly from both these DNA elements. The AAA+ family members TIP48/reptin and the histone variant H2A.Z are required to remodel the chromatin environment at CCND1 as a prerequisite for binding of the estrogen receptor (ERα) in the presence of hormone. TIP48 promotes acetylation and exchange of H2A.Z, which triggers a dissociation of the CCND1 3' enhancer from the promoter, thereby releasing a repressive intragenic loop. This release then enables the estrogen receptor to bind to the CCND1 promoter. Our findings provide new insight into the priming of chromatin required for transcription factor access to their target sequence. Dynamic release of gene loops could be a rapid means to remodel chromatin and to stimulate transcription in response to hormones.


Asunto(s)
Ensamble y Desensamble de Cromatina , Estrógenos , Cromatina , Histonas/metabolismo , Humanos , Nucleosomas , Regiones Promotoras Genéticas , Activación Transcripcional
10.
J Immunol ; 174(10): 6176-83, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15879114

RESUMEN

Except for the expression of IgM and IgD, DNA recombination is constantly needed for the expression of other Ig classes and subclasses. The predominant path of class switch recombination (CSR) is intrachromosomal, and the looping-out and deletion model has been abundantly documented. However, switch regions also occasionally constitute convenient substrates for interchromosomal recombination, since it is noticeably the case in a number of chromosomal translocations causing oncogene deregulation in the course of lymphoma and myeloma. Although asymmetric accessibility of Ig alleles should theoretically limit its occurrence, interallelic CSR was shown to occur at low levels during IgA switching in rabbit, where the definition of allotypes within both V and C regions helped identify interchromosomally derived Ig. Thus, we wished to evaluate precisely interallelic CSR frequency in mouse B cells, by using a system in which only one allele (of b allotype) could express a functional VDJ region, whereas only interallelic CSR could restore expression of an excluded (a allotype) allele. In our study, we show that interchromosomal recombination of V(H) and Cgamma or Calpha occurs in vivo in B cells at a frequency that makes a significant contribution to physiological class switching: trans-association of V(H) and C(H) genes accounted for 7% of all alpha mRNA, and this frequency was about twice higher for the gamma3 transcripts, despite the much shorter distance between the J(H) region and the Cgamma3 gene, thus confirming that this phenomenon corresponded to site-specific switching and not to random recombination between long homologous loci.


Asunto(s)
Alelos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Reordenamiento Génico de Cadena Pesada de Linfocito B , Cambio de Clase de Inmunoglobulina/genética , Recombinación Genética , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Cultivadas , Exones/genética , Femenino , Reordenamiento Génico de Cadena Pesada de Linfocito B/genética , Reordenamiento Génico de Cadena Ligera de Linfocito B/genética , Tamización de Portadores Genéticos , Homocigoto , Inmunoglobulina A/biosíntesis , Inmunoglobulina A/sangre , Inmunoglobulina A/genética , Regiones Constantes de Inmunoglobulina/genética , Cadenas J de Inmunoglobulina/genética , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/genética , Región Variable de Inmunoglobulina/genética , Cadenas alfa de Inmunoglobulina/genética , Cadenas gamma de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Confocal , Mutagénesis Insercional , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA