Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 153(1): 7, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36732278

RESUMEN

This work describes a 35.9 kHz ultrasonic transducer that incorporates a magnetic arrangement to apply a static-compressive prestress to a d32-mode relaxor ferroelectric single crystal drive-element. The magnetic arrangement produces a 22.5 N static-compressive force, inducing a static compression of ∼630 nm on the drive-element. Operating in air with a continuous-wave 10 V peak drive at ∼35.9 kHz, the measured resonant peak displacement of the transducers head-mass was 127 nm. This is well within the predicted static compression, thus, the drive-element is protected from damaging tensile stress. Under the same drive conditions and at an axial distance of 10 mm from the face of the head-mass, the measured acoustic pressure was ∼12 Pa. Analytical and finite element model predictions and the measured behaviour of a prototype device are presented and show good correlation, demonstrating that magnetic prestressing of the drive-element can be a viable alternative to the traditional bolt-clamp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...