Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1107397, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559728

RESUMEN

CD4+ T cells play a central role in the adaptive immune response through their capacity to activate, support and control other immune cells. Although these cells have become the focus of intense research, a comprehensive understanding of the underlying regulatory networks that orchestrate CD4+ T cell function and activation is still incomplete. Here, we analyzed a large transcriptomic dataset consisting of 48 different human CD4+ T cell conditions. By performing reverse network engineering, we identified six common denominators of CD4+ T cell functionality (CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3). Moreover, we also analyzed condition-specific genes which led us to the identification of the transcription factor MEOX1 in Treg cells. Expression of MEOX1 was comparable to FOXP3 in Treg cells and can be upregulated by IL-2. Epigenetic analyses revealed a permissive epigenetic landscape for MEOX1 solely in Treg cells. Knockdown of MEOX1 in Treg cells revealed a profound impact on downstream gene expression programs and Treg cell suppressive capacity. These findings in the context of CD4+ T cells contribute to a better understanding of the transcriptional networks and biological mechanisms controlling CD4+ T cell functionality, which opens new avenues for future therapeutic strategies.


Asunto(s)
Regulación de la Expresión Génica , Linfocitos T Reguladores , Humanos , Redes Reguladoras de Genes , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética
2.
Eur J Immunol ; 53(10): e2250270, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37366299

RESUMEN

Mucosal barrier integrity and pathogen clearance is a complex process influenced by both Th17 and Treg cells. Previously, we had described the DNA methylation profile of Th17 cells and identified Zinc finger protein (Zfp)362 to be uniquely demethylated. Here, we generated Zfp362-/- mice to unravel the role of Zfp362 for Th17 cell biology. Zfp362-/- mice appeared clinically normal, showed no phenotypic alterations in the T-cell compartment, and upon colonization with segmented filamentous bacteria, no effect of Zfp362 deficiency on Th17 cell differentiation was observed. By contrast, Zfp362 deletion resulted in increased frequencies of colonic Foxp3+ Treg cells and IL-10+ and RORγt+ Treg cell subsets in mesenteric lymph nodes. Adoptive transfer of naïve CD4+ T cells from Zfp362-/- mice into Rag2-/- mice resulted in a significantly lower weight loss when compared with controls receiving cells from Zfp362+/+ littermates. However, this attenuated weight loss did not correlate with alterations of Th17 cells but instead was associated with an increase of effector Treg cells in mesenteric lymph nodes. Together, these results suggest that Zfp362 plays an important role in promoting colonic inflammation; however, this function is derived from constraining the effector function of Treg cells rather than directly promoting Th17 cell differentiation.


Asunto(s)
Linfocitos T Reguladores , Células Th17 , Ratones , Animales , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Diferenciación Celular , Inflamación/metabolismo , Pérdida de Peso , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
3.
J Neuroinflammation ; 20(1): 58, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36872323

RESUMEN

BACKGROUND: Theiler's murine encephalomyelitis virus (TMEV) is a single-stranded RNA virus that causes encephalitis followed by chronic demyelination in SJL mice and spontaneous seizures in C57BL/6 mice. Since earlier studies indicated a critical role of type I interferon (IFN-I) signaling in the control of viral replication in the central nervous system (CNS), mouse strain-specific differences in pathways induced by the IFN-I receptor (IFNAR) might determine the outcome of TMEV infection. METHODS: Data of RNA-seq analysis and immunohistochemistry were used to compare the gene and protein expression of IFN-I signaling pathway members between mock- and TMEV-infected SJL and C57BL/6 mice at 4, 7 and 14 days post-infection (dpi). To address the impact of IFNAR signaling in selected brain-resident cell types, conditional knockout mice with an IFNAR deficiency in cells of the neuroectodermal lineage (NesCre±IFNARfl/fl), neurons (Syn1Cre±IFNARfl/fl), astrocytes (GFAPCre±IFNARfl/fl), and microglia (Sall1CreER±IFNARfl/fl) on a C57BL/6 background were tested. PCR and an immunoassay were used to quantify TMEV RNA and cytokine and chemokine expression in their brain at 4 dpi. RESULTS: RNA-seq analysis revealed upregulation of most ISGs in SJL and C57BL/6 mice, but Ifi202b mRNA transcripts were only increased in SJL and Trim12a only in C57BL/6 mice. Immunohistochemistry showed minor differences in ISG expression (ISG15, OAS, PKR) between both mouse strains. While all immunocompetent Cre-negative control mice and the majority of mice with IFNAR deficiency in neurons or microglia survived until 14 dpi, lack of IFNAR expression in all cells (IFNAR-/-), neuroectodermal cells, or astrocytes induced lethal disease in most of the analyzed mice, which was associated with unrestricted viral replication. NesCre±IFNARfl/fl mice showed more Ifnb1, Tnfa, Il6, Il10, Il12b and Ifng mRNA transcripts than Cre-/-IFNARfl/fl mice. IFNAR-/- mice also demonstrated increased IFN-α, IFN-ß, IL1-ß, IL-6, and CXCL-1 protein levels, which highly correlated with viral load. CONCLUSIONS: Ifi202b and Trim12a expression levels likely contribute to mouse strain-specific susceptibility to TMEV-induced CNS lesions. Restriction of viral replication is strongly dependent on IFNAR signaling of neuroectodermal cells, which also controls the expression of key pro- and anti-inflammatory cytokines during viral brain infection.


Asunto(s)
Theilovirus , Animales , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Encéfalo , Sistema Nervioso Central , Citocinas , Anticuerpos
4.
Front Immunol ; 13: 1082055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569861

RESUMEN

Regulatory T cells in non-lymphoid tissues are not only critical for maintaining self-tolerance, but are also important for promoting organ homeostasis and tissue repair. It is proposed that the generation of tissue Treg cells is a stepwise, multi-site process, accompanied by extensive epigenome remodeling, finally leading to the acquisition of unique tissue-specific epigenetic signatures. This process is initiated in the thymus, where Treg cells acquire core phenotypic and functional properties, followed by a priming step in secondary lymphoid organs that permits Treg cells to exit the lymphoid organs and seed into non-lymphoid tissues. There, a final specialization process takes place in response to unique microenvironmental cues in the respective tissue. In this review, we will summarize recent findings on this multi-site tissue Treg cell differentiation and highlight the importance of epigenetic remodeling during these stepwise events.


Asunto(s)
Tolerancia Inmunológica , Linfocitos T Reguladores , Diferenciación Celular , Autotolerancia , Epigénesis Genética
5.
Nat Commun ; 13(1): 7227, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36433946

RESUMEN

Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.


Asunto(s)
Ganglios Linfáticos , Células del Estroma , Ratones , Animales , Ratones Endogámicos C57BL , Células del Estroma/metabolismo , Ganglios Linfáticos/patología , Moléculas de Adhesión Celular/metabolismo , Antígenos CD34/metabolismo
6.
Nat Commun ; 13(1): 6894, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371426

RESUMEN

Seasonal influenza outbreaks, especially in high-risk groups such as the elderly, represent an important public health problem. Prevailing inadequate efficacy of seasonal vaccines is a crucial bottleneck. Understanding the immunological and molecular mechanisms underpinning differential influenza vaccine responsiveness is essential to improve vaccination strategies. Here we show comprehensive characterization of the immune response of randomly selected elderly participants (≥ 65 years), immunized with the adjuvanted influenza vaccine Fluad. In-depth analyses by serology, multi-parametric flow cytometry, multiplex and transcriptome analysis, coupled to bioinformatics and mathematical modelling, reveal distinguishing immunological and molecular features between responders and non-responders defined by vaccine-induced seroconversion. Non-responders are specifically characterized by multiple suppressive immune mechanisms. The generated comprehensive high dimensional dataset enables the identification of putative mechanisms and nodes responsible for vaccine non-responsiveness independently of confounding age-related effects, with the potential to facilitate development of tailored vaccination strategies for the elderly.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Anciano , Anticuerpos Antivirales , Gripe Humana/prevención & control , Adyuvantes Inmunológicos/farmacología , Vacunación
7.
Front Immunol ; 13: 991671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119090

RESUMEN

The first wave of Foxp3+ regulatory T cells (Tregs) generated in neonates is critical for the life-long prevention of autoimmunity. Although it is widely accepted that neonates are highly susceptible to infections, the impact of neonatal infections on this first wave of Tregs is completely unknown. Here, we challenged newborn Treg fate-mapping mice (Foxp3eGFPCreERT2xROSA26STOP-eYFP) with the Toll-like receptor (TLR) agonists LPS and poly I:C to mimic inflammatory perturbations upon neonatal bacterial or viral infections, respectively, and subsequently administrated tamoxifen during the first 8 days of life to selectively label the first wave of Tregs. Neonatally-tagged Tregs preferentially accumulated in non-lymphoid tissues (NLTs) when compared to secondary lymphoid organs (SLOs) irrespective of the treatment. One week post challenge, no differences in the frequency and phenotypes of neonatally-tagged Tregs were observed between challenged mice and untreated controls. However, upon aging, a decreased frequency of neonatally-tagged Tregs in both NLTs and SLOs was detected in challenged mice when compared to untreated controls. This decrease became significant 12 weeks post challenge, with no signs of altered Foxp3 stability. Remarkably, this late decrease in the frequency of neonatally-tagged Tregs only occurred when newborns were challenged, as treating 8-days-old mice with TLR agonists did not result in long-lasting alterations of the first wave of Tregs. Combined single-cell T cell receptor (TCR)-seq and RNA-seq revealed that neonatal inflammatory perturbations drastically diminished TCR diversity and long-lastingly altered the transcriptome of neonatally-tagged Tregs, exemplified by lower expression of Tigit, Foxp3, and Il2ra. Together, our data demonstrate that a single, transient encounter with a pathogen in early life can have long-lasting consequences for the first wave of Tregs, which might affect immunological tolerance, prevention of autoimmunity, and other non-canonical functions of tissue-resident Tregs in adulthood.


Asunto(s)
Linfocitos T Reguladores , Transcriptoma , Animales , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Poli I/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Tamoxifeno/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
8.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35938981

RESUMEN

Epigenetic modifications such as DNA methylation play an essential role in imprinting specific transcriptional patterns in cells. We performed genome-wide DNA methylation profiling of murine lymph node-derived ILCs, which led to the identification of differentially methylated regions (DMRs) and the definition of epigenetic marker regions in ILCs. Marker regions were located in genes with a described function for ILCs, such as Tbx21, Gata3, or Il23r, but also in genes that have not been related to ILC biology. Methylation levels of the marker regions and expression of the associated genes were strongly correlated, indicating their functional relevance. Comparison with T helper cell methylomes revealed clear lineage differences, despite partial similarities in the methylation of specific ILC marker regions. IL-33-mediated challenge affected methylation of ILC2 epigenetic marker regions in the liver, while remaining relatively stable in the lung. In our study, we identified a set of epigenetic markers that can serve as a tool to study phenotypic and functional properties of ILCs.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Biomarcadores , Metilación de ADN/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Ratones
9.
Nat Commun ; 13(1): 3998, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810180

RESUMEN

Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/ß-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy.


Asunto(s)
Acetil-CoA Carboxilasa , Lipogénesis , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis/fisiología , Células Madre/metabolismo
10.
Cell Res ; 32(1): 72-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34702947

RESUMEN

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Asunto(s)
Canales de Potasio , Receptores de Antígenos de Linfocitos T , Linfocitos T Reguladores , Animales , Diferenciación Celular , Factores de Transcripción Forkhead , Humanos , Ratones , FN-kappa B , Timocitos , Timo
11.
Sci Immunol ; 6(65): eabf3111, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797691

RESUMEN

Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB­inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell­dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.


Asunto(s)
Autoinmunidad , Células Epiteliales/inmunología , Factores de Transcripción Forkhead/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Humanos , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/deficiencia , Timo/citología , Quinasa de Factor Nuclear kappa B
12.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299148

RESUMEN

During influenza A virus (IAV) infections, CD4+ T cell responses within infected lungs mainly involve T helper 1 (Th1) and regulatory T cells (Tregs). Th1-mediated responses favor the co-expression of T-box transcription factor 21 (T-bet) in Foxp3+ Tregs, enabling the efficient Treg control of Th1 responses in infected tissues. So far, the exact accumulation kinetics of T cell subsets in the lungs and lung-draining lymph nodes (dLN) of IAV-infected mice is incompletely understood, and the epigenetic signature of Tregs accumulating in infected lungs has not been investigated. Here, we report that the total T cell and the two-step Treg accumulation in IAV-infected lungs is transient, whereas the change in the ratio of CD4+ to CD8+ T cells is more durable. Within lungs, the frequency of Tregs co-expressing T-bet is steadily, yet transiently, increasing with a peak at Day 7 post-infection. Interestingly, T-bet+ Tregs accumulating in IAV-infected lungs displayed a strongly demethylated Tbx21 locus, similarly as in T-bet+ conventional T cells, and a fully demethylated Treg-specific demethylated region (TSDR) within the Foxp3 locus. In summary, our data suggest that T-bet+ but not T-bet- Tregs are epigenetically stabilized during IAV-induced infection in the lung.


Asunto(s)
Linfocitos T CD8-positivos/virología , Epigénesis Genética , Factores de Transcripción Forkhead/metabolismo , Pulmón/virología , Infecciones por Orthomyxoviridae/virología , Proteínas de Dominio T Box/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Factores de Transcripción Forkhead/genética , Virus de la Influenza A/fisiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Proteínas de Dominio T Box/genética
13.
Brain Pathol ; 31(6): e13000, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34231271

RESUMEN

Viral infections of the central nervous system cause acute or delayed neuropathology and clinical consequences ranging from asymptomatic courses to chronic, debilitating diseases. The outcome of viral encephalitis is partially determined by genetically programed immune response patterns of the host. Experimental infection of mice with Theiler's murine encephalomyelitis virus (TMEV) causes diverse neurologic diseases, including TMEV-induced demyelinating disease (TMEV-IDD), depending on the used mouse strain. The aim of the present study was to compare initial transcriptomic changes occurring in the brain of TMEV-infected SJL (TMEV-IDD susceptible) and C57BL/6 (TMEV-IDD resistant) mice. Animals were infected with TMEV and sacrificed 4, 7, or 14 days post infection. RNA was isolated from brain tissue and analyzed by whole-transcriptome sequencing. Selected differences were confirmed on a protein level by immunohistochemistry. In mock-infected SJL and C57BL/6 mice, >200 differentially expressed genes (DEGs) were detected. Following TMEV-infection, the number of DEGs increased to >700. Infected C57BL/6 mice showed a higher expression of transcripts related to antigen presentation via major histocompatibility complex (MHC) I, innate antiviral immune responses and cytotoxicity, compared with infected SJL animals. Expression of many of those genes was weaker or delayed in SJL mice, associated with a failure of viral clearance in this mouse strain. SJL mice showed prolonged elevation of MHC II and chemotactic genes compared with C57BL/6 mice, which presumably facilitates the induction of chronic demyelinating disease. In addition, elevated expression of several genes associated with immunomodulatory or -suppressive functions was observed in SJL mice. The exploratory study confirms previous observations in the model and provides an extensive list of new immunologic parameters potentially contributing to different outcomes of viral encephalitis in two mouse strains.


Asunto(s)
Encéfalo/metabolismo , Infecciones por Cardiovirus/metabolismo , Enfermedades Desmielinizantes/metabolismo , Perfilación de la Expresión Génica , Inmunidad Innata/fisiología , Animales , Encéfalo/patología , Encéfalo/virología , Infecciones por Cardiovirus/genética , Infecciones por Cardiovirus/patología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/virología , Modelos Animales de Enfermedad , Ratones , Theilovirus
14.
Methods Mol Biol ; 2285: 265-276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928559

RESUMEN

The comparison of methylomes from immune cells enables the identification of differentially methylated regions and thereby region-associated gene loci. Those regions can be used to discriminate one immune cell population from the other, as well as help to identify key molecules and major pathways determining the unique phenotypes of immune cell lineages. The combination of bisulfite treatment of genomic DNA and next-generation sequencing provides the basis for studying epigenetic changes in different immune cell populations. Further development of whole-genome bisulfite sequencing resulted in a protocol for sequencing libraries that accept both single- or double-stranded DNA from fixed or nonfixed cells, respectively. Therefore, researchers can include immune cell populations in their methylation studies whose isolation depends on the staining of intracellular molecules.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenoma , Epigenómica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Sistema Inmunológico/citología , Análisis de Secuencia de ADN , Animales , Humanos , Proyectos de Investigación , Flujo de Trabajo
15.
Eur J Immunol ; 51(5): 1166-1181, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33638148

RESUMEN

Foxp3+ Treg cells, which are crucial for maintenance of self-tolerance, mainly develop within the thymus, where they arise from CD25+ Foxp3- or CD25- Foxp3+ Treg cell precursors. Although it is known that infections can cause transient thymic involution, the impact of infection-induced thymus atrophy on thymic Treg (tTreg) cell development is unknown. Here, we infected mice with influenza A virus (IAV) and studied thymocyte population dynamics post infection. IAV infection caused a massive, but transient thymic involution, dominated by a loss of CD4+ CD8+ double-positive (DP) thymocytes, which was accompanied by a significant increase in the frequency of CD25+ Foxp3+ tTreg cells. Differential apoptosis susceptibility could be experimentally excluded as a reason for the relative tTreg cell increase, and mathematical modeling suggested that enhanced tTreg cell generation cannot explain the increased frequency of tTreg cells. Yet, an increased death of DP thymocytes and augmented exit of single-positive (SP) thymocytes was suggested to be causative. Interestingly, IAV-induced thymus atrophy resulted in a significantly reduced T-cell receptor (TCR) repertoire diversity of newly produced tTreg cells. Taken together, IAV-induced thymus atrophy is substantially altering the dynamics of major thymocyte populations, finally resulting in a relative increase of tTreg cells with an altered TCR repertoire.


Asunto(s)
Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Timo/patología , Animales , Atrofia , Biomarcadores , Supervivencia Celular/inmunología , Inmunofenotipificación , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Ratones , Infecciones por Orthomyxoviridae/virología , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo , Timocitos/inmunología , Timocitos/metabolismo
16.
Cell Mol Immunol ; 18(2): 398-414, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408345

RESUMEN

Signaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.


Asunto(s)
Colitis/inmunología , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Mutación , Linfocitos T Reguladores/inmunología , Animales , Colitis/metabolismo , Colitis/patología , Femenino , Factores de Transcripción Forkhead/genética , Homeostasis , Terapia de Inmunosupresión , Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
17.
Mucosal Immunol ; 14(1): 164-176, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32355319

RESUMEN

CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacological inhibition of ACC1 by the natural compound soraphen A mirrored the anti-inflammatory effects of T-cell-specific targeting, but also enhanced susceptibility toward infection with C. rodentium. Further analysis revealed that deletion of ACC1 in RORγt+ innate lymphoid cells (ILC), but not dendritic cells or macrophages, decreased resistance to infection by interfering with IL-22 production and intestinal barrier function. Together, our study suggests pharmacological targeting of ACC1 as an effective approach for metabolic immune modulation of T-cell-driven intestinal inflammatory responses, but also reveals an important role of ACC1-mediated lipogenesis for the function of RORγt+ ILC.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Ácidos Grasos/biosíntesis , Inmunidad Innata , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Biomarcadores , Colitis/etiología , Colitis/metabolismo , Colitis/patología , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
18.
Front Immunol ; 11: 1579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849537

RESUMEN

Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains.


Asunto(s)
Toxinas Bacterianas/inmunología , Proteínas Hemolisinas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Celular , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Caspasas/metabolismo , Muerte Celular , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
19.
J Clin Invest ; 130(9): 4587-4600, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484796

RESUMEN

Th cells integrate signals from their microenvironment to acquire distinct specialization programs for efficient clearance of diverse pathogens or for immunotolerance. Ionic signals have recently been demonstrated to affect T cell polarization and function. Sodium chloride (NaCl) was proposed to accumulate in peripheral tissues upon dietary intake and to promote autoimmunity via the Th17 cell axis. Here, we demonstrate that high-NaCl conditions induced a stable, pathogen-specific, antiinflammatory Th17 cell fate in human T cells in vitro. The p38/MAPK pathway, involving NFAT5 and SGK1, regulated FoxP3 and IL-17A expression in high-NaCl conditions. The NaCl-induced acquisition of an antiinflammatory Th17 cell fate was confirmed in vivo in an experimental autoimmune encephalomyelitis (EAE) mouse model, which demonstrated strongly reduced disease symptoms upon transfer of T cells polarized in high-NaCl conditions. However, NaCl was coopted to promote murine and human Th17 cell pathogenicity, if T cell stimulation occurred in a proinflammatory and TGF-ß-low cytokine microenvironment. Taken together, our findings reveal a context-dependent, dichotomous role for NaCl in shaping Th17 cell pathogenicity. NaCl might therefore prove beneficial for the treatment of chronic inflammatory diseases in combination with cytokine-blocking drugs.


Asunto(s)
Microambiente Celular/efectos de los fármacos , Citocinas/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Cloruro de Sodio Dietético/farmacología , Células Th17/inmunología , Animales , Microambiente Celular/inmunología , Citocinas/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Transgénicos , Células Th17/patología
20.
Sci Rep ; 10(1): 6550, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300237

RESUMEN

Human γδ T cells are potent cytotoxic effector cells, produce a variety of cytokines, and can acquire regulatory activity. Induction of FOXP3, the key transcription factor of regulatory T cells (Treg), by TGF-ß in human Vγ9 Vδ2 T cells has been previously reported. Vitamin C is an antioxidant and acts as multiplier of DNA hydroxymethylation. Here we have investigated the effect of the more stable phospho-modified Vitamin C (pVC) on TGF-ß-induced FOXP3 expression and the resulting regulatory activity of highly purified human Vγ9 Vδ2 T cells. pVC significantly increased the TGF-ß-induced FOXP3 expression and stability and also increased the suppressive activity of Vγ9 Vδ2 T cells. Importantly, pVC induced hypomethylation of the Treg-specific demethylated region (TSDR) in the FOXP3 gene. Genome-wide methylation analysis by Reduced Representation Bisulfite Sequencing additionally revealed differentially methylated regions in several important genes upon pVC treatment of γδ T cells. While Vitamin C also enhances effector functions of Vγ9 Vδ2 T cells in the absence of TGF-ß, our results demonstrate that pVC potently increases the suppressive activity and FOXP3 expression in TGF-ß-treated Vγ9 Vδ2 T cells by epigenetic modification of the FOXP3 gene.


Asunto(s)
Ácido Ascórbico/farmacología , Epigénesis Genética/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T Reguladores/metabolismo , Adulto , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Desmetilación , Humanos , Fosforilación/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...