Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(2): 1491-1505, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38377468

RESUMEN

Carbon-flow-regulator A (CfrA) adapts carbon flux to nitrogen conditions in nondiazotrophic cyanobacteria. Under nitrogen deficiency, CfrA leads to the storage of excess carbon, which cannot combine with nitrogen, mainly as glycogen. cfrA overexpression from the arsenite-inducible, nitrogen-independent ParsB promoter allows analysis of the metabolic effects of CfrA accumulation. Considering that the main consequence of cfrA overexpression is glycogen accumulation, we examined carbon distribution in response to cfrA expression in Synechocystis sp. PCC 6803 strains impaired in synthesizing this polymer. We carried out a comparative phenotypic analysis to evaluate cfrA overexpression in the wild-type strain and in a mutant of ADP-glucose pyrophosphorylase (ΔglgC), which is unable to synthesize glycogen. The accumulation of CfrA in the wild-type background caused a photosynthetic readjustment although growth was not affected. However, in a ΔglgC strain, growth decreased depending on CfrA accumulation and photosynthesis was severely affected. An elemental analysis of the H, C, and N content of cells revealed that cfrA expression in the wild-type caused an increase in the C/N ratio, due to decreased nitrogen assimilation. Metabolomic study indicated that these cells store sucrose and glycosylglycerol, in addition to the previously described glycogen accumulation. However, cells deficient in glycogen synthesis accumulated large amounts of Calvin-Benson cycle intermediates as cfrA was expressed. These cells also showed increased levels of some amino acids, mainly alanine, serine, valine, isoleucine, and leucine. The findings suggest that by controlling cfrA expression, in different conditions and strains, we could change the distribution of fixed carbon, with potential biotechnological benefits.


Asunto(s)
Proteínas Bacterianas , Carbono , Nitrógeno , Fotosíntesis , Synechocystis , Carbono/metabolismo , Synechocystis/metabolismo , Synechocystis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Nitrógeno/metabolismo , Glucógeno/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Plant Physiol ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386687

RESUMEN

Thioredoxins play an essential role in regulating enzyme activity in response to environmental changes, especially in photosynthetic organisms. They are crucial for metabolic regulation in cyanobacteria, but the key redox-regulated central processes remain to be determined. Physiological, metabolic, and transcriptomic characterization of a conditional mutant of the essential Synechocystis sp. PCC 6803 thioredoxin trxA gene (STXA2) revealed that decreased TrxA levels alter cell morphology and induce a dormant-like state. Furthermore, TrxA depletion in the STXA2 strain inhibited protein synthesis and led to changes in amino acid pools and nitrogen/carbon reserve polymers, accompanied by oxidation of the EF-Tu elongation factor. Transcriptomic analysis of TrxA depletion in STXA2 revealed a robust transcriptional response. Down-regulated genes formed a large cluster directly related to photosynthesis, ATP synthesis, and CO2 fixation. In contrast, up-regulated genes were grouped into different clusters related to respiratory electron transport, carotenoid biosynthesis, amino acid metabolism, and protein degradation, among others. These findings highlight the complex regulatory mechanisms that govern cyanobacterial metabolism, where TrxA acts as a critical regulator that orchestrates the transition from anabolic to maintenance metabolism and regulates carbon and nitrogen balance.

3.
Plant Physiol ; 171(3): 1879-92, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208262

RESUMEN

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Cianobacterias/metabolismo , Glucógeno/metabolismo , Almidón Sintasa/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glucógeno/química , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Mutación , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Almidón/metabolismo , Almidón Sintasa/genética , Synechocystis/genética , Synechocystis/metabolismo
4.
Life (Basel) ; 4(4): 865-86, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25501581

RESUMEN

Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.

5.
PLoS One ; 9(5): e96826, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24797411

RESUMEN

Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [As(III)] and arsenate [As(V)]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.


Asunto(s)
Arsénico/química , Synechocystis/efectos de los fármacos , Synechocystis/genética , Arseniato Reductasas/metabolismo , Arseniatos/química , Arsenitos/química , Transporte Biológico , Cobre/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genoma Bacteriano/efectos de los fármacos , Glutatión/metabolismo , Metales/química , Mutación , Níquel/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Estrés Oxidativo , Fenotipo , Azufre/química
6.
Plant Physiol ; 155(4): 1806-16, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21335525

RESUMEN

Redox regulation based on disulfide-dithiol conversion catalyzed by thioredoxins is an important component of chloroplast function. The reducing power is provided by ferredoxin reduced by the photosynthetic electron transport chain. In addition, chloroplasts are equipped with a peculiar NADPH-dependent thioredoxin reductase, termed NTRC, with a joint thioredoxin domain at the carboxyl terminus. Because NADPH can be produced by the oxidative pentose phosphate pathway during the night, NTRC is important to maintain the chloroplast redox homeostasis under light limitation. NTRC is exclusive for photosynthetic organisms such as plants, algae, and some, but not all, cyanobacteria. Phylogenetic analysis suggests that chloroplast NTRC originated from an ancestral cyanobacterial enzyme. While the biochemical properties of plant NTRC are well documented, little is known about the cyanobacterial enzyme. With the aim of comparing cyanobacterial and plant NTRCs, we have expressed the full-length enzyme from the cyanobacterium Anabaena species PCC 7120 as well as site-directed mutant variants and truncated polypeptides containing the NTR or the thioredoxin domains of the protein. Immunological and kinetic analysis showed a high similarity between NTRCs from plants and cyanobacteria. Both enzymes efficiently reduced 2-Cys peroxiredoxins from plants and from Anabaena but not from the cyanobacterium Synechocystis. Arabidopsis (Arabidopsis thaliana) NTRC knockout plants were transformed with the Anabaena NTRC gene. Despite a lower content of NTRC than in wild-type plants, the transgenic plants showed significant recovery of growth and pigmentation. Therefore, the Anabaena enzyme fulfills functions of the plant enzyme in vivo, further emphasizing the similarity between cyanobacterial and plant NTRCs.


Asunto(s)
Anabaena/enzimología , Arabidopsis/enzimología , Peroxirredoxinas/biosíntesis , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Anabaena/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloroplastos/enzimología , Prueba de Complementación Genética , Mutación , NADP/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Estructura Cuaternaria de Proteína , Synechocystis/enzimología , Synechocystis/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...