Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Parasitol ; 39(10): 886-887, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37344291
2.
Mar Drugs ; 21(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233473

RESUMEN

Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.


Asunto(s)
Aminopeptidasas , Leucil Aminopeptidasa , Humanos , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Leucil Aminopeptidasa/química , Péptidos/química , Antígenos CD13
3.
Microorganisms ; 10(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36013978

RESUMEN

Parasitic protists cause some of the most well-known human and animal diseases such as malaria, toxoplasmosis, amoebic meningitis, sleeping sickness, leishmaniosis, and diarrheal illness of protozoan origin (e [...].

4.
BMC Genomics ; 23(1): 485, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35780080

RESUMEN

Our current view of the evolutionary history, coding and adaptive capacities of Apicomplexa, protozoan parasites of a wide range of metazoan, is currently strongly biased toward species infecting humans, as data on early diverging apicomplexan lineages infecting invertebrates is extremely limited. Here, we characterized the genome of the marine eugregarine Porospora gigantea, intestinal parasite of Lobsters, remarkable for the macroscopic size of its vegetative feeding forms (trophozoites) and its gliding speed, the fastest so far recorded for Apicomplexa. Two highly syntenic genomes named A and B were assembled. Similar in size (~ 9 Mb) and coding capacity (~ 5300 genes), A and B genomes are 10.8% divergent at the nucleotide level, corresponding to 16-38 My in divergent time. Orthogroup analysis across 25 (proto)Apicomplexa species, including Gregarina niphandrodes, showed that A and B are highly divergent from all other known apicomplexan species, revealing an unexpected breadth of diversity. Phylogenetically these two species branch sisters to Cephaloidophoroidea, and thus expand the known crustacean gregarine superfamily. The genomes were mined for genes encoding proteins necessary for gliding, a key feature of apicomplexans parasites, currently studied through the molecular model called glideosome. Sequence analysis shows that actin-related proteins and regulatory factors are strongly conserved within apicomplexans. In contrast, the predicted protein sequences of core glideosome proteins and adhesion proteins are highly variable among apicomplexan lineages, especially in gregarines. These results confirm the importance of studying gregarines to widen our biological and evolutionary view of apicomplexan species diversity, and to deepen our understanding of the molecular bases of key functions such as gliding, well known to allow access to the intracellular parasitic lifestyle in Apicomplexa.


Asunto(s)
Apicomplexa , Animales , Apicomplexa/genética , Crustáceos/genética , Genoma , Humanos , Invertebrados/genética , Filogenia
5.
Microorganisms ; 10(2)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35208728

RESUMEN

The probiotic strain Lactobacillus johnsonii CNCM I-4884 exhibits anti-Giardia activity in vitro and in vivo in a murine model of giardiasis. The aim of this study was the identification and characterization of the probiotic potential of L. johnsonii CNCM I-4884, as well as its safety assessment. This strain was originally classified as Lactobacillus gasseri based on 16S gene sequence analysis. Whole genome sequencing led to a reclassification as L. johnsonii. A genome-wide search for biosynthetic pathways revealed a high degree of auxotrophy, balanced by large transport and catabolic systems. The strain also exhibits tolerance to low pH and bile salts and shows strong bile salt hydrolase (BSH) activity. Sequencing results revealed the absence of antimicrobial resistance genes and other virulence factors. Phenotypic tests confirm that the strain is susceptible to a panel of 8 antibiotics of both human and animal relevance. Altogether, the in silico and in vitro results confirm that L. johnsonii CNCM I-4884 is well adapted to the gastrointestinal environment and could be safely used in probiotic formulations.

6.
Bioorg Med Chem ; 51: 116513, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798379

RESUMEN

A series of new quinazolinedione derivatives have been readily synthesized and evaluated for their in vitro antiplasmodial growth inhibition activity. Most of the compounds inhibited P. falciparum FcB1 strain in the low to medium micromolar concentration. The 2-ethoxy 8ag', 2-trifluoromethoxy 8ai' and 4-fluoro-2-methoxy 8ak' showed the best inhibitory activity with EC50 values around 5 µM and were non-toxic to the primary human fibroblast cell line AB943. However, these compounds were less potent than the original hit MMV665916, which showed remarkable growth inhibition with EC50 value of 0.4 µM and presented the highest selectivity index (SI > 250). In addition, a novel approach for determining the docking poses of these quinazolinedione derivatives with their potential protein target, the P. falciparum farnesyltransferase PfFT, was investigated.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Farnesiltransferasa/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Relación Estructura-Actividad
7.
Microorganisms ; 9(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34576757

RESUMEN

Giardia intestinalis is a flagellated protozoan responsible for giardiosis (also called giardiasis in humans), the most prevalent and widespread parasitic infection in humans and mammals worldwide. The intestinal microbiota is highly diverse and any alteration in its composition may impact on the health of the host. While studies on the mouse model of giardiosis described the role of the gut microbiota in host susceptibility to infection by the parasite, little is known about the gut microbiota during natural infections in dogs and particularly in puppies. In this study, we monitored naturally G. intestinalis-infected puppies for 3 months and quantified cyst excretion every 2 weeks. All puppies remained subclinically infected during the sampling period as confirmed by fecal examination. In parallel, we performed 16S Illumina sequencing of fecal samples from the different time points to assess the impact of G. intestinalis infection on gut microbiota development of the puppies, as well as gut health markers of immunity such as fecal IgA and calprotectin. Sequencing results revealed that the canine fecal microbiota of Giardia-infected puppies becomes more complex and less diverse with increasing age. In addition, significant differences in the structure of the microbiota were observed between puppies with high and low Giardia cyst excretion. Chronic subclinical G. intestinalis infection appears to be associated with some detrimental structural changes in the gut microbiota. G. intestinalis-associated dysbiosis is characterized by an enrichment of facultative anaerobic, mucus-degrading, pro-inflammatory species and opportunistic pathogens, as well as a reduction of Lactobacillus johnsonii at specific time points. Calprotectin levels increased with age, suggesting the establishment of chronic low-grade inflammation in puppies. Further work is needed to demonstrate whether these alterations in the canine gut microbiota could lead to a dysbiosis-related disease, such as irritable bowel syndrome (IBS) or inflammatory bowel disease (IBD).

9.
Microorganisms ; 9(7)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361866

RESUMEN

Apicomplexa are unicellular eukaryotes that parasitise a wide spectrum of invertebrates and vertebrates, including humans. In their hosts, they occupy a variety of niches, from extracellular cavities (intestine, coelom) to epicellular and intracellular locations, depending on the species and/or developmental stages. During their evolution, Apicomplexa thus developed an exceptionally wide range of unique features to reach these diversified parasitic niches and to survive there, at least long enough to ensure their own transmission or that of their progeny. This review summarises the current state of knowledge on the attachment/invasive and nutrient uptake strategies displayed by apicomplexan parasites, focusing on trophozoite stages of their so far poorly studied basal representatives, which mostly parasitise invertebrate hosts. We describe their most important morphofunctional features, and where applicable, discuss existing major similarities and/or differences in the corresponding mechanisms, incomparably better described at the molecular level in the more advanced Apicomplexa species, of medical and veterinary significance, which mainly occupy intracellular niches in vertebrate hosts.

10.
Chemistry ; 27(28): 7764-7772, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33848033

RESUMEN

The introduction of substituents on bare heterocyclic scaffolds can selectively be achieved by directed C-H functionalization. However, such methods have only occasionally been used, in an iterative manner, to decorate various positions of a medicinal scaffold to build chemical libraries. We herein report the multiple, site selective, metal-catalyzed C-H functionalization of a "programmed" 4-hydroxyquinoline. This medicinally privileged template indeed possesses multiple reactive sites for diversity-oriented functionalization, of which four were targeted. The C-2 and C-8 decorations were directed by an N-oxide, before taking benefit of an O-carbamoyl protection at C-4 to perform a Fries rearrangement and install a carboxamide at C-3. This also released the carbonyl group of 4-quinolones, the ultimate directing group to functionalize position 5. Our study highlights the power of multiple C-H functionalization to generate diversity in a biologically relevant library, after showing its strong antimalarial potential.

11.
Parasite ; 28: 12, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33620310

RESUMEN

Orthoptera are infected by about 60 species of gregarines assigned to the genus Gregarina Dufour, 1828. Among these species, Gregarina garnhami Canning, 1956 from Schistocerca gregaria (Forsskål, 1775) was considered by Lipa et al. in 1996 to be synonymous with Gregarina acridiorum (Léger 1893), a parasite of several orthopteran species including Locusta migratoria (Linné, 1758). Here, a morphological study and molecular analyses of the SSU rDNA marker demonstrate that specimens of S. gregaria and specimens of L. migratoria are infected by two distinct Gregarina species, G. garnhami and G. acridiorum, respectively. Validation of the species confirms that molecular analyses provide useful taxonomical information. Phenotypic plasticity was clearly observed in the case of G. garnhami: the morphology of its trophozoites, gamonts and syzygies varied according to the geographical location of S. gregaria and the subspecies infected.


TITLE: La taxonomie intégrative confirme que Gregarina garnhami et G. acridiorum (Apicomplexa, Gregarinidae), parasites de Schistocerca gregaria et Locusta migratoria (Insecta, Orthoptera), sont des espèces distinctes. ABSTRACT: Les orthoptères sont parasités par environ soixante espèces de grégarines affiliées au genre Gregarina Dufour, 1828. Parmi ces espèces Gregarina garnhami Canning, 1956 décrite chez Schistocerca gregaria (Forskål, 1775), a été mise en synonymie par Lipa et al. en 1996 avec Gregarina acridiorum (Léger 1893), parasite de plusieurs espèces d'orthoptères dont Locusta migratoria (Linné, 1758). Ici, une étude morphologique et des analyses moléculaires du marqueur SSU rDNA démontrent que les spécimens de S. gregaria et ceux de L. migratoria sont infectés par 2 espèces distinctes de grégarines, Gregarina garnhami et Gregarina acridiorum, respectivement. La validation de ces espèces confirme l'importance des informations fournies par les analyses moléculaires dans les études taxonomiques. Une plasticité phénotypique a été clairement observée dans le cas de G. garnhami : la morphologie de ses trophozoïtes, gamontes et syzygies varie selon la localisation géographique et la sous-espèce de S. gregaria infectée.


Asunto(s)
Apicomplexa/clasificación , Especiación Genética , Locusta migratoria/parasitología , Animales , ADN Ribosómico/genética
12.
BMC Biol ; 19(1): 1, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407428

RESUMEN

BACKGROUND: Dinoflagellates are aquatic protists particularly widespread in the oceans worldwide. Some are responsible for toxic blooms while others live in symbiotic relationships, either as mutualistic symbionts in corals or as parasites infecting other protists and animals. Dinoflagellates harbor atypically large genomes (~ 3 to 250 Gb), with gene organization and gene expression patterns very different from closely related apicomplexan parasites. Here we sequenced and analyzed the genomes of two early-diverging and co-occurring parasitic dinoflagellate Amoebophrya strains, to shed light on the emergence of such atypical genomic features, dinoflagellate evolution, and host specialization. RESULTS: We sequenced, assembled, and annotated high-quality genomes for two Amoebophrya strains (A25 and A120), using a combination of Illumina paired-end short-read and Oxford Nanopore Technology (ONT) MinION long-read sequencing approaches. We found a small number of transposable elements, along with short introns and intergenic regions, and a limited number of gene families, together contribute to the compactness of the Amoebophrya genomes, a feature potentially linked with parasitism. While the majority of Amoebophrya proteins (63.7% of A25 and 59.3% of A120) had no functional assignment, we found many orthologs shared with Dinophyceae. Our analyses revealed a strong tendency for genes encoded by unidirectional clusters and high levels of synteny conservation between the two genomes despite low interspecific protein sequence similarity, suggesting rapid protein evolution. Most strikingly, we identified a large portion of non-canonical introns, including repeated introns, displaying a broad variability of associated splicing motifs never observed among eukaryotes. Those introner elements appear to have the capacity to spread over their respective genomes in a manner similar to transposable elements. Finally, we confirmed the reduction of organelles observed in Amoebophrya spp., i.e., loss of the plastid, potential loss of a mitochondrial genome and functions. CONCLUSION: These results expand the range of atypical genome features found in basal dinoflagellates and raise questions regarding speciation and the evolutionary mechanisms at play while parastitism was selected for in this particular unicellular lineage.


Asunto(s)
Evolución Biológica , ADN Protozoario/análisis , Dinoflagelados/citología , Dinoflagelados/genética , Orgánulos/fisiología , Proteínas Protozoarias/análisis , Secuencia de Bases , Evolución Molecular , Intrones/fisiología
13.
Z Naturforsch C J Biosci ; 75(11-12): 397-407, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32609656

RESUMEN

Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site. Information about marine invertebrate's neutral mAPs properties is scarce; available data are mainly derived from genomics and cDNA studies. The goal of this work was to characterize the biochemical properties of the neutral APs activities in eight Cuban marine invertebrate species from the Phyla Mollusca, Porifera, Echinodermata, and Cnidaria. Determination of substrate specificity, optimal pH and effects of inhibitors (1,10-phenanthroline, amastatin, and bestatin) and cobalt on activity led to the identification of distinct neutral AP-like activities, whose biochemical behaviors were similar to those of the M1 and M17 families of mAPs. Additionally, M18-like glutamyl AP activities were detected. Thus, marine invertebrates express biochemical activities likely belonging to various families of metallo-aminopeptidases.


Asunto(s)
Secuencia de Aminoácidos/genética , Aminopeptidasas/química , Organismos Acuáticos/enzimología , Invertebrados/enzimología , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/genética , Aminopeptidasas/aislamiento & purificación , Animales , Cuba , Leucina/análogos & derivados , Leucina/farmacología , Péptidos/farmacología , Fenantrolinas/farmacología , Especificidad por Sustrato
14.
Bioorg Chem ; 98: 103750, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32182520

RESUMEN

Aminobenzosuberone-based PfA-M1 inhibitors were explored as novel antimalarial agents against two different Plasmodium falciparum strains. The 4-phenyl derivative 7c exhibited the most encouraging growth inhibitory activity with IC50 values of 6.5-11.2 µM. X-ray crystal structures and early assessment of DMPK/ADME-Tox parameters allowed us to initiate structure-based drug design approach and understand the liabilities (such as potential metabolic and aqueous solubility issues) as well as identify the opportunities for improvement of this aminobenzosuberone series. It also suggested that compound 7c should be regarded as an attractive chemical tool to investigate the different biological roles of this multifunctional PfA-M1 protein.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Anisoles/farmacología , Antimaláricos/farmacología , Cicloheptanos/farmacología , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/efectos de los fármacos , Aminopeptidasas/metabolismo , Anisoles/síntesis química , Anisoles/química , Antimaláricos/síntesis química , Antimaláricos/química , Cicloheptanos/síntesis química , Cicloheptanos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Relación Estructura-Actividad
15.
Biol Cell ; 112(6): 173-185, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32176937

RESUMEN

Gregarines, a polyphyletic group of apicomplexan parasites infecting mostly non-vertebrates hosts, remains poorly known at taxonomic, phylogenetic and genomic levels. However, it represents an essential group for understanding evolutionary history and adaptive capacities of apicomplexan parasites to the remarkable diversity of their hosts. Because they have a mostly extracellular lifestyle, gregarines have developed other cellular developmental forms and host-parasite interactions, compared with their much better studied apicomplexan cousins, intracellular parasites of vertebrates (Hemosporidia, Coccidia, Cryptosporidia). This review highlights the promises offered by the molecular exploration of gregarines, that have been until now left on the side of the road of the comparative -omic exploration of apicomplexan parasites. Elucidating molecular bases for both their ultrastructural, functional and behavioural similarities and differences, compared with those of the typical apicomplexan models, is expected to provide entirely novel clues on the adaptive capacities developed by Apicomplexa over evolution. A challenge remains to identify which gregarines should be explored in priority, as recent metadata from open and host-associated environments have confirmed how underestimated is our current view on true gregarine biodiversity. It is now time to turn to gregarines to widen the currently highly skewed view we have of adaptive mechanisms developed by Apicomplexa.


Asunto(s)
Apicomplexa/clasificación , Apicomplexa/genética , Genómica , Animales , Biodiversidad , Metadatos , Parásitos/clasificación , Parásitos/genética , Filogenia
16.
Molecules ; 23(10)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314342

RESUMEN

The synthesis of racemic substituted 7-amino-5,7,8,9-tetrahydrobenzocyclohepten-6-one hydrochlorides was optimized to enhance reproducibility and increase the overall yield. In order to investigate their specificity, series of enzyme inhibition assays were carried out against a diversity of proteases, covering representative members of aspartic, cysteine, metallo and serine endopeptidases and including eight members of the monometallic M1 family of aminopeptidases as well as two members of the bimetallic M17 and M28 aminopeptidase families. This aminobenzosuberone scaffold indeed demonstrated selective inhibition of M1 aminopeptidases to the exclusion of other tested protease families; it was particularly potent against mammalian APN and its bacterial/parasitic orthologues EcPepN and PfAM1.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/química , Cumarinas/química , Cumarinas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
17.
Front Microbiol ; 9: 2251, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333799

RESUMEN

Understanding factors that generate, maintain, and constrain host-parasite associations is of major interest to biologists. Although little studied, many extremely virulent micro-eukaryotic parasites infecting microalgae have been reported in the marine plankton. This is the case for Amoebophrya, a diverse and highly widespread group of Syndiniales infecting and potentially controlling dinoflagellate populations. Here, we analyzed the time-scale gene expression of a complete infection cycle of two Amoebophrya strains infecting the same host (the dinoflagellate Scrippsiella acuminata), but diverging by their host range (one infecting a single host, the other infecting more than one species). Over two-thirds of genes showed two-fold differences in expression between at least two sampled stages of the Amoebophrya life cycle. Genes related to carbohydrate metabolism as well as signaling pathways involving proteases and transporters were overexpressed during the free-living stage of the parasitoid. Once inside the host, all genes related to transcription and translation pathways were actively expressed, suggesting the rapid and extensive protein translation needed following host-cell invasion. Finally, genes related to cellular division and components of the flagellum organization were overexpressed during the sporont stage. In order to gain a deeper understanding of the biological basis of the host-parasitoid interaction, we screened proteins involved in host-cell recognition, invasion, and protection against host-defense identified in model apicomplexan parasites. Very few of the genes encoding critical components of the parasitic lifestyle of apicomplexans could be unambiguously identified as highly expressed in Amoebophrya. Genes related to the oxidative stress response were identified as highly expressed in both parasitoid strains. Among them, the correlated expression of superoxide dismutase/ascorbate peroxidase in the specialist parasite was consistent with previous studies on Perkinsus marinus defense. However, this defense process could not be identified in the generalist Amoebophrya strain, suggesting the establishment of different strategies for parasite protection related to host specificity.

18.
Parasite ; 25: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29737275

RESUMEN

Metallopeptidases are a family of proteins with domains that remain highly conserved throughout evolution. These hydrolases require divalent metal cation(s) to activate the water molecule in order to carry out their catalytic action on peptide bonds by nucleophilic attack. Metallopeptidases from parasitic protozoa, including Toxoplasma, are investigated because of their crucial role in parasite biology. In the present study, we screened the T. gondii database using PFAM motifs specific for metallopeptidases in association with the MEROPS peptidase Database (release 10.0). In all, 49 genes encoding proteins with metallopeptidase signatures were identified in the Toxoplasma genome. An Interpro Search enabled us to uncover their domain/motif organization, and orthologs with the highest similarity by BLAST were used for annotation. These 49 Toxoplasma metallopeptidases clustered into 15 families described in the MEROPS database. Experimental expression analysis of their genes in the tachyzoite stage revealed transcription for all genes studied. Further research on the role of these peptidases should increase our knowledge of basic Toxoplasma biology and provide opportunities to identify novel therapeutic targets. This type of study would also open a path towards the comparative biology of apicomplexans.


Asunto(s)
Expresión Génica , Genoma de Protozoos , Metaloproteasas/genética , Toxoplasma/enzimología , Toxoplasma/genética , Secuencia de Aminoácidos , Animales , Simulación por Computador , Estadios del Ciclo de Vida/genética , Metaloproteasas/aislamiento & purificación , Toxoplasma/fisiología
19.
Front Microbiol ; 9: 89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472903

RESUMEN

Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals.

20.
Biochimie ; 142: 216-225, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28964831

RESUMEN

Neutral metallo-aminopeptidase (APN) catalyzes the cleavage of neutral and basic amino acids from the N-terminus of protein or peptide substrates. APN expression is dysregulated in inflammatory diseases as well as in several types of cancer. Therefore, inhibitors of APN may be effective against cancer and inflammation. By virtual screening and enzymatic assays, we identified three non-competitive inhibitors (α > 1) of the porcine and human APN with Ki values in the µM range. These non-peptidic compounds lack the classical zinc-binding groups (ZBG) present in most of the APN inhibitors. Molecular docking simulations suggested the novel inhibitors suppress APN activity by an alternative mechanism to Zn coordination: they interacted with residues comprising the S1 and S5' subsites of APN. Of note, these compounds also inhibited the porcine aminopeptidase A (pAPA) using a competitive inhibition mode. This indicated differences in the binding mode of these compounds with APN and APA. Based on sequence and structural analyses, we predicted the significance of targeting human APN residues: Ala-351, Arg-442, Ala-474, Phe-896 and Asn-900 for improving the selectivity of the identified compounds. Remarkably, the intraperitoneal injection of compounds BTB07018 and JFD00064 inhibited APN activity in rat brain, liver and kidney indicating good bio-distribution of these inhibitors in vivo. These data reinforce the idea of designing novel APN inhibitors based on lead compounds without ZBG.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Especificidad de Órganos , Conformación Proteica , Ratas , Porcinos , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...