Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(10): 4790-4796, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38372055

RESUMEN

The Al(III)-based MOF CYCU-3 exhibits a relevant SO2 adsorption performance with a total uptake of 11.03 mmol g-1 at 1 bar and 298 K. CYCU-3 displays high chemical stability towards dry and wet SO2 exposure. DRIFTS experiments and computational calculations demonstrated that hydrogen bonding between SO2 molecules and bridging Al(III)-OH groups are the preferential adsorption sites. In addition, photoluminescence experiments demonstrated the relevance of CYCU-3 for application in SO2 detection with good selectivity for SO2 over CO2 and H2O. The change in fluorescence performance demonstrates a clear turn-on effect after SO2 interaction. Finally, the suppression of ligand-metal energy transfer along with the enhancement of ligand-centered π* → π electronic transition was proposed as a plausible fluorescence mechanism.

2.
Chem Commun (Camb) ; 59(68): 10226-10242, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37554029

RESUMEN

Metal-organic framework (MOF)-based catalysts are outstanding alternative materials for the chemical transformation of greenhouse and toxic gases into high-add-value products. MOF catalysts exhibit remarkable properties to host different active sites. The combination of catalytic properties of MOFs is mentioned in order to understand their application. Furthermore, the main catalytic reactions, which involve the chemical transformation of CH4, CO2, NOx, fluorinated gases, O3, CO, VOCs, and H2S, are highlighted. The main active centers and reaction conditions for these reactions are presented and discussed to understand the reaction mechanisms. Interestingly, implementing MOF materials as catalysts for toxic gas-phase reactions is a great opportunity to provide new alternatives to enhance the air quality of our planet.

3.
Dalton Trans ; 52(35): 12490-12495, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37602766

RESUMEN

A non-porous version of SU-101 (herein n-SU-101) was evaluated for the CO2 cycloaddition reaction. The findings revealed that open metal sites (Bi3+) are necessary for the reaction. n-SU-101 displays a high styrene oxide conversion of 96.6% under mild conditions (3 bar and 80 °C). The catalytic activity of n-SU-101 demonstrated its potential application for the cycloaddition of CO2 using styrene oxide.

4.
Chem Commun (Camb) ; 59(22): 3273-3276, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36825543

RESUMEN

MFM-300(Sc) was explored as a catalyst for the gas-phase hydrogenation of acetone. The catalysis results support the presence of non-permanent open Sc(III) sites within the structure due to the requirement of Lewis acid sites for the reaction to proceed. The open Sc(III) sites are generated in situ due to the presence of hemilabile Sc-O bonds. MFM-300(Sc) showed high mechanical and chemical stability, and the crystalline structure was maintained after the catalytic reaction. The catalytic activity of the material was quantified by performing a gas-phase reaction using a continuous flow reactor. The acetone conversion in MFM-300(Sc) was estimated to be 27.7% with no loss of activity after catalytic cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...