Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1727, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242962

RESUMEN

Pesticides are ubiquitous in the catchments of the Great Barrier Reef (GBR) and regularly discharge into the nearshore waters. Effective management of pesticides requires suitable water quality guideline values (WQGVs), and further ecotoxicological data for many pesticides are needed to improve the reliability of environmental risk assessments. To help address this issue, toxicity thresholds were determined to two species of tropical marine microalgae Tisochrysis lutea and Tetraselmis sp. for a suite of herbicides detected in the GBR. Photosystem II (PSII) herbicides significantly reduced growth with no effect concentration (NEC) and 10% effect concentration (EC10) values spanning two orders of magnitude from 0.60 µg L-1 for diuron to 60 µg L-1 for simazine across both species. However, growth was insensitive to the non-PSII herbicides. The NEC/EC10 thresholds for most herbicide-microalgae combinations were greater than recent WQGVs intended to protect 99% of species (PC99); however, metribuzin was toxic to T. lutea at concentrations lower than the current PC99 value, which may have to be revisited. The toxicity thresholds for alternative herbicides derived here further inform the development of national and GBR-specific WQGVs, but more toxicity data is needed to develop WQGVs for the > 50 additional pesticides detected in catchments of the GBR.


Asunto(s)
Haptophyta , Herbicidas , Microalgas , Plaguicidas , Contaminantes Químicos del Agua , Herbicidas/toxicidad , Herbicidas/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Plaguicidas/análisis
2.
Integr Environ Assess Manag ; 20(1): 279-293, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37431758

RESUMEN

A range of new statistical approaches is being developed and/or adopted in ecotoxicology that, when combined, can greatly improve the estimation of no-effect toxicity values from concentration-response (CR) experimental data. In particular, we compare the existing no-effect-concentration (NEC) threshold-based toxicity metric with an alternative no-significant-effect-concentration (NSEC) metric suitable for when CR data do not show evidence of a threshold effect. Using a model-averaging approach, these metrics can be combined to yield estimates of N(S)EC and of their uncertainty within a single analysis framework. The outcome is a framework for CR analysis that is robust to uncertainty in the model formulation, and for which resulting estimates can be confidently integrated into risk assessment frameworks, such as the species sensitivity distribution (SSD). Integr Environ Assess Manag 2024;20:279-293. © 2023 Commonwealth of Australia and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Ecotoxicología , Ecotoxicología/métodos , Medición de Riesgo/métodos , Incertidumbre , Sensibilidad y Especificidad , Australia
3.
Mar Pollut Bull ; 199: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141581

RESUMEN

Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Larva/metabolismo , Hidrocarburos/análisis , Petróleo/análisis , Tiempo (Meteorología) , Agua/análisis , Contaminantes Químicos del Agua/análisis , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
4.
Environ Pollut ; 332: 121963, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286027

RESUMEN

The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 µg L-1 for toluene, naphthalene and 1-MN, respectively. Corresponding toxicokinetic parameters (εLC50) defining the time progression of toxicity were 0.830, 0.692, and 0.256 d-1, respectively. Latent effects after an additional 7-d recovery in uncontaminated seawater were not observed. Effect concentrations (EC50s) for 50% growth inhibition were 1.9- to 3.6-fold lower than the LC50s for each aromatic hydrocarbon. There were no observed effects of aromatic hydrocarbon exposure on colour score (a proxy for bleaching) or photosynthetic efficiency. Acute and chronic critical target lipid body burdens (CTLBBs) of 70.3 ± 16.3 and 13.6 ± 18.4 µmol g-1 octanol (± standard error) were calculated for survival and growth inhibition based on 7-d LC50 and EC10 values, respectively. These species-specific constants indicate adult A. millepora is more sensitive than other corals reported so far but is of average sensitivity in comparison with other aquatic taxa in the target lipid model database. These results advance our understanding of acute hazards of petroleum contaminants to key habitat-building tropical coral reef species.


Asunto(s)
Antozoos , Petróleo , Animales , Antozoos/fisiología , Naftalenos/toxicidad , Tolueno , Petróleo/toxicidad , Lípidos
5.
Sci Rep ; 11(1): 21636, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737333

RESUMEN

Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (ΔF/Fm') and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1). All seven Photosystem II (PSII) herbicides tested inhibited ΔF/Fm' and SGR, with toxicity thresholds for SGR ranging between 2.75 and 320 µg L-1 (no effect concentration) and 2.54-257 µg L-1 (EC10). There was a strong correlation between EC50s for ΔF/Fm' and SGR for all PSII herbicides indicating that inhibition of ΔF/Fm' can be considered a biologically relevant toxicity endpoint for PSII herbicides to this species. The non-PSII herbicides haloxyfop and imazapic did not affect ΔF/Fm' or SGR at the highest concentrations tested. The inclusion of this toxicity data for Symbiodiniaceae will contribute to improving WQGVs to adequately inform risk assessments and the management of herbicides in tropical marine ecosystems.


Asunto(s)
Antozoos/efectos de los fármacos , Antozoos/metabolismo , Herbicidas/efectos adversos , Animales , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Herbicidas/farmacología , Herbicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Simbiosis/fisiología , Contaminantes Químicos del Agua/farmacología
6.
Mar Pollut Bull ; 172: 112899, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523424

RESUMEN

Toxicity thresholds for dissolved oil applied in tropical ocean risk assessments are largely based on the sensitivities of temperate and/or freshwater species. To explore the suitability of these thresholds for tropical habitats we experimentally determined toxicity thresholds for eight tropical species for a partially weathered gas condensate, applied the target lipid model (TLM) to predict toxicity of fresh and weathered condensates and compared sensitivities of the tropical species with model predictions. The experimental condensate-specific hazard concentration (HC5) was 167 µg L-1 total aromatic hydrocarbons (TAH), with the TLM-modelled HC5 (78 µg L-1 TAH) being more conservative, supporting TLM-modelled thresholds for tropical application. Putative species-specific critical target lipid body burdens (CTLBBs) indicated that several of the species tested were among the more sensitive species in the TLM database ranging from 5.1 (coral larvae) to 97 (sponge larvae) µmol g-1 octanol and can be applied in modelling risk for tropical marine ecosystems.


Asunto(s)
Antozoos , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Aceites , Contaminantes Químicos del Agua/toxicidad
7.
Mar Pollut Bull ; 169: 112582, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34119962

RESUMEN

The Great Barrier Reef (GBR) is threatened by climate change and local pressures, including contaminants in nearshore habitats. This study investigated the combined effects of a GBR-relevant contaminant, the herbicide diuron, under current and two future climate scenarios on the coral Acropora millepora. All physiological responses tested (effective quantum yield (ΔF/Fm'), photosynthesis, calcification rate) were negatively affected with increasing concentrations of diuron. Interactive effects between diuron and climate were observed for all responses; however, climate had no significant effect on ΔF/Fm' or calcification rates. Photosynthesis was negatively affected as the climate scenarios were adjusted from ambient (28.1 °C, pCO2 = 397 ppm) to RCP8.5 2050 (29.1 °C, pCO2 = 680 ppm) and 2100 (30.2 °C, pCO2 = 858 ppm) with EC50 values declining from 19.4 to 10.6 and 2.6 µg L-1 diuron in turn. These results highlight the likelihood that water quality guideline values may need to be adjusted as the climate changes.


Asunto(s)
Antozoos , Herbicidas , Animales , Cambio Climático , Arrecifes de Coral , Diurona/toxicidad , Herbicidas/toxicidad
8.
Sci Rep ; 10(1): 19592, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177549

RESUMEN

Conventional photosystem II (PSII) herbicides applied in agriculture can pose significant environmental risks to aquatic environments. In response to the frequent detection of these herbicides in the Great Barrier Reef (GBR) catchment area, transitions towards 'alternative' herbicides are now widely supported. However, water quality guideline values (WQGVs) for alternative herbicides are lacking and their potential ecological impacts on tropical marine species are generally unknown. To improve our understanding of the risks posed by some of these alternative herbicides on marine species under tropical conditions, we tested the effects of four herbicides on the widely distributed diatom Chaetoceros muelleri. The PSII herbicides diuron, propazine, and tebuthiuron induced substantial reductions in both 24 h effective quantum yields (ΔF/Fm') and 3-day specific growth rates (SGR). The effect concentrations, which reduced ΔF/Fm' by 50% (EC50), ranged from 4.25 µg L-1 diuron to 48.6 µg L-1 propazine, while the EC50s for SGR were on average threefold higher, ranging from 12.4 µg L-1 diuron to 187 µg L-1 tebuthiuron. Our results clearly demonstrated that inhibition of ΔF/Fm' in PSII is directly linked to reduced growth (R2 = 0.95) in this species, further supporting application of ΔF/Fm' inhibition as a valid bioindicator of ecological relevance for PSII herbicides that could contribute to deriving future WQGVs. In contrast, SGR and ΔF/Fm' of C. muelleri were nonresponsive to the non-PSII herbicide haloxyfop at the highest concentration tested (4570 µg L-1), suggesting haloxyfop does not pose a risk to C. muelleri. The toxicity thresholds (e.g. no effect concentrations; NECs) identified in this study will contribute to the derivation of high-reliability marine WQGVs for some alternative herbicides detected in GBR waters and support future assessments of the cumulative risks of complex herbicide mixtures commonly detected in coastal waters.


Asunto(s)
Diatomeas/efectos de los fármacos , Herbicidas/toxicidad , Diatomeas/crecimiento & desarrollo , Diurona/toxicidad , Ecotoxicología/métodos , Compuestos de Metilurea/toxicidad , Microalgas/efectos de los fármacos , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Piridinas/toxicidad , Triazinas/toxicidad , Contaminantes Químicos del Agua/toxicidad
9.
PeerJ ; 8: e9615, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194337

RESUMEN

Tropical marine ecosystems, such as coral reefs, face several threats to their health and resilience, including poor water quality. Previous studies on the risks posed by pesticides have focused on five priority herbicides; however, as the number of pesticides applied in coastal agriculture increases, a suite of 'alternative' pesticides is being detected in tropical nearshore waters. To improve our understanding of the risks posed by alternative pesticides to tropical marine organisms, the effects of three insecticides (diazinon, fipronil, imidacloprid) and two fungicides (chlorothalonil, propiconazole) were tested on larval metamorphosis of the coral Acropora tenuis. A. tenuis larvae were affected by all five pesticides and the reference toxicant copper. The no effect concentration (NEC) and the 10% and 50% effect concentrations (EC10 and EC50, respectively) for larval metamorphosis were estimated from concentration-response curves after 48 h exposure. The NEC, EC10 and EC50 (in µg L-1), respectively, of each pesticide were as follows: chlorothalonil (2.4, 2.8, 6.0); fipronil (12.3, 13.9, 29.1); diazinon (38.0, 40.8, 54.7); imidacloprid (263, 273, 347); and propiconazole (269, 330, 1008). These toxicity thresholds are higher than reported concentrations in monitoring programs; however, these data will contribute to improving water quality guideline values, which inform the total risk assessments posed by complex contaminant mixtures to which these pesticides contribute.

10.
Sci Total Environ ; 739: 140308, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32846507

RESUMEN

Tropical marine habitat-builders such as calcifying green algae can be susceptible to climate change (warming and acidification). This study evaluated the cumulative effects of ocean warming (OW), ocean acidification (OA) and the herbicide diuron on the calcifying green algae Halimeda opuntia. We also assessed the influence of acclimation history to experimental climate change conditions on physiological responses. H. opuntia were exposed for 15 days to orthogonal combinations of three climate scenarios [ambient (28 °C, pCO2 = 378 ppm), 2050 (29 °C, pCO2 = 567 ppm) and 2100 (30 °C, pCO2 = 721 ppm)] and to six diuron concentrations (up to 29 µg L-1). Half of the H. opuntia had been acclimated for eight months to the climate scenarios in a mesocosm approach, while the remaining half were not pre-acclimated, as is current practice in most experiments. Climate effects on quantum yield (ΔF/Fm'), photosynthesis and calcification in future climate scenarios were significantly stronger (by -24, -46 and +26%, respectively) in non-acclimated algae, suggesting experimental bias may exaggerate effects in organisms not appropriately acclimated to future-climate conditions. Thus, full analysis was done on acclimated plants only. Interactive effects of future climate scenarios and diuron were observed for ΔF/Fm', while the detrimental effects of climate and diuron on net photosynthesis and total antioxidant capacity (TAC) were additive. Calcification-related enzymes were negatively affected only by diuron, with inhibition of Ca-ATPase and upregulation of carbonic anhydrase. The combined and consistent physiological and biochemical evidence of negative impacts (across six indicators) of both herbicide and future-climate conditions on the health of H. opuntia highlights the need to address both climate change and water quality. Guideline values for contaminants may also need to be lowered considering 'climate adjusted thresholds'. Importantly, this study highlights the value of applying substantial future climate acclimation periods in experimental studies to avoid exaggerated organism responses to OW and OA.


Asunto(s)
Chlorophyta , Herbicidas , Aclimatación , Dióxido de Carbono , Cambio Climático , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Agua de Mar
11.
Sci Rep ; 10(1): 7612, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376837

RESUMEN

Herbicide contamination of nearshore tropical marine ecosystems is widespread and persistent; however, risks posed by most 'alternative' herbicides to tropical marine microalgae remain poorly understood. Experimental exposures of the important but understudied microalgae Rhodomonas salina to seven individual Photosystem II (PSII) inhibitor herbicides (diuron, metribuzin, hexazinone, tebuthiuron, bromacil, simazine, propazine) led to inhibition of effective quantum yield (ΔF/Fm') and subsequent reductions in specific growth rates (SGR). The concentrations which reduced ΔF/Fm' by 50% (EC50) ranged from 1.71-59.2 µg L-1, while the EC50s for SGR were 4-times higher, ranging from 6.27-188 µg L-1. Inhibition of ΔF/Fm' indicated reduced photosynthetic capacity, and this correlated linearly with reduced SGR (R2 = 0.89), supporting the application of ∆F/Fm' inhibition as a robust and sensitive indicator of sub-lethal toxicity of PSII inhibitors for this microalga. The three non-PSII inhibitor herbicides (imazapic, haloxyfop and 2,4-Dichlorophenoxyacetic acid (2,4-D)) caused low or no toxic responses to the function of the PSII or growth at the highest concentrations tested suggesting these herbicides pose little risk to R. salina. This study highlights the suitability of including R. salina in future species sensitivity distributions (SSDs) to support water quality guideline development for the management of herbicide contamination in tropical marine ecosystems.


Asunto(s)
Herbicidas/toxicidad , Microalgas/efectos de los fármacos , Clima Tropical , Contaminantes Químicos del Agua/toxicidad , Ecotoxicología , Microalgas/enzimología , Microalgas/crecimiento & desarrollo , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores
12.
Sci Rep ; 8(1): 8635, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872088

RESUMEN

Coral reefs are at risk of exposure to petroleum hydrocarbons from shipping spills and uncontrolled discharges during extraction. The toxicity of petroleum hydrocarbons can substantially increase in the presence of ultraviolet radiation (UVR), therefore spills in shallow coral reef environments may be particularly hazardous to reef species. Here we investigated the sensitivity of coral larvae (Acropora tenuis) to dissolved hydrocarbons from heavy fuel oil (HFO) and diesel in the absence and presence of UVR. Larval settlement success decreased with increasing concentrations of dissolved HFO, and co-exposure to UVR doubled the toxicity: 50% effect concentrations (EC50) decreased from 96 (-UVR) to 51 (+UVR) total petroleum aromatic hydrocarbons (TPAH). Toxic thresholds for HFO were similar to concentrations reported during marine spills: EC10s of 24 (-UVR) and 15 (+UVR) µg l-1. While less toxic, diesel also reduced settlement and exhibited phototoxicity: EC10s of 122 (+UVR) and 302 (-UVR) µg l-1. This study demonstrates that the presence of UVR increases the hazard posed by oil pollution to tropical, shallow-water coral reefs. Further research on the effects of oils in the presence of UVR is needed to improve the environmental relevance of risk assessments and ensure appropriate protection for shallow reef environments against oil pollution.


Asunto(s)
Antozoos/efectos de los fármacos , Antozoos/efectos de la radiación , Organismos Acuáticos/efectos de los fármacos , Hidrocarburos/toxicidad , Petróleo/toxicidad , Rayos Ultravioleta , Contaminantes Químicos del Agua/toxicidad , Animales , Antozoos/fisiología , Larva/efectos de los fármacos , Larva/fisiología , Larva/efectos de la radiación , Contaminación por Petróleo , Fármacos Fotosensibilizantes/toxicidad , Análisis de Supervivencia , Clima Tropical
13.
Sci Rep ; 8(1): 4808, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556061

RESUMEN

The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Herbicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/metabolismo , Herbicidas/metabolismo , Clima Tropical , Contaminantes Químicos del Agua/metabolismo
14.
Sci Rep ; 7: 45404, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358396

RESUMEN

Tropical seagrasses are at their highest risk of exposure to photosystem II (PSII) herbicides when elevated rainfall and runoff from farms transports these toxicants into coastal habitats during summer, coinciding with periods of elevated temperature. PSII herbicides, such as diuron, can increase the sensitivity of corals to thermal stress, but little is known of the potential for herbicides to impact the thermal optima of tropical seagrass. Here we employed a well-plate approach to experimentally assess the effects of diuron on the photosynthetic performance of Halophila ovalis leaves across a 25 °C temperature range (36 combinations of these stressors across 15-40 °C). The thermal optimum for photosynthetic efficiency (▵) in H. ovalis was 31 °C while lower and higher temperatures reduced ▵ as did all elevated concentrations of diuron. There were significant interactions between the effects of temperature and diuron, with a majority of the combined stresses causing sub-additive (antagonistic) effects. However, both stressors caused negative responses and the sum of the responses was greater than that caused by temperature or diuron alone. These results indicate that improving water quality (reducing herbicide in runoff) is likely to maximise seagrass health during extreme temperature events that will become more common as the climate changes.


Asunto(s)
Diurona/toxicidad , Herbicidas/toxicidad , Hydrocharitaceae/metabolismo , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Diurona/química , Herbicidas/química , Hojas de la Planta/metabolismo , Temperatura
15.
PLoS One ; 11(11): e0165890, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27806103

RESUMEN

Widespread contamination of nearshore marine systems, including the Great Barrier Reef (GBR) lagoon, with agricultural herbicides has long been recognised. The fate of these contaminants in the marine environment is poorly understood but the detection of photosystem II (PSII) herbicides in the GBR year-round suggests very slow degradation rates. Here, we evaluated the persistence of a range of commonly detected herbicides in marine water under field-relevant concentrations and conditions. Twelve-month degradation experiments were conducted in large open tanks, under different light scenarios and in the presence and absence of natural sediments. All PSII herbicides were persistent under control conditions (dark, no sediments) with half-lives of 300 d for atrazine, 499 d diuron, 1994 d hexazinone, 1766 d tebuthiuron, while the non-PSII herbicides were less persistent at 147 d for metolachlor and 59 d for 2,4-D. The degradation of herbicides was 2-10 fold more rapid in the presence of a diurnal light cycle and coastal sediments; apart from 2,4-D which degraded more slowly in the presence of light. Despite the more rapid degradation observed for most herbicides in the presence of light and sediments, the half-lives remained > 100 d for the PS II herbicides. The effects of light and sediments on herbicide persistence were likely due to their influence on microbial community composition and its ability to utilise the herbicides as a carbon source. These results help explain the year-round presence of PSII herbicides in marine systems, including the GBR, but more research on the transport, degradation and toxicity on a wider range of pesticides and their transformation products is needed to improve their regulation in sensitive environments.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Herbicidas/química , Complejo de Proteína del Fotosistema II/metabolismo , Contaminantes Químicos del Agua/química , Arrecifes de Coral , Monitoreo del Ambiente , Semivida , Herbicidas/análisis , Cinética , Océano Pacífico , Clima Tropical , Contaminantes Químicos del Agua/análisis
16.
Sci Rep ; 6: 25894, 2016 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-27174014

RESUMEN

Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (<63 µm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.


Asunto(s)
Alismatales/efectos de los fármacos , Antozoos/efectos de los fármacos , Carbón Mineral/efectos adversos , Perciformes/crecimiento & desarrollo , Contaminantes Químicos del Agua/efectos adversos , Alismatales/crecimiento & desarrollo , Animales , Antozoos/crecimiento & desarrollo , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/crecimiento & desarrollo , Medición de Riesgo
17.
Sci Rep ; 6: 21153, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26892387

RESUMEN

Risks posed by oil spills to coral reefs are difficult to evaluate, partially due to the absence of studies that adequately assess toxicity to relevant coral reef species. Here we experimentally tested the acute toxicity of condensate, representing a fraction of light crude oil, to coral (Acropora tenuis) and sponge (Rhopaloeides odorabile) larvae. The metamorphosis of coral larvae was inhibited at total petroleum aromatic hydrocarbon (TPAH) concentrations of water accommodated fractions (WAF) as low as 103 µg l(-1), similar to concentrations detected in seawater following large spills. The sensitivity of coral larvae increased by 40% when co-exposed to UV light that they might encounter in shallow reefal systems. Condensate WAF was more toxic to coral larvae than predicted by summing the toxicity of its main components (benzene, toluene, p-xylene and napthalene). In contrast, the sensitivity of sponge larvae to condensate WAF (>10,000 µg l(-1) TPAH) was far less than coral in the presence and absence of UV, but similar to that of other marine invertebrates. While these results highlight the relative sensitivity of coral larvae to oil, further research is needed to better understand and predict the impacts and risks posed by hydrocarbons to tropical reef systems.


Asunto(s)
Antozoos/efectos de los fármacos , Petróleo/toxicidad , Animales , Antozoos/fisiología , Antozoos/efectos de la radiación , Arrecifes de Coral , Ecotoxicología , Larva , Metamorfosis Biológica , Naftalenos/toxicidad , Contaminación por Petróleo , Rayos Ultravioleta/efectos adversos , Contaminantes Químicos del Agua
18.
Sci Rep ; 5: 17443, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616444

RESUMEN

Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 µg l(-1) (ametryn) to 132 µg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.


Asunto(s)
Herbicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Tracheophyta/efectos de los fármacos , Tracheophyta/metabolismo , Contaminantes Químicos del Agua/toxicidad , Relación Dosis-Respuesta a Droga , Factores de Tiempo
19.
PLoS One ; 10(8): e0136391, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26313296

RESUMEN

Herbicides are detected year-round in marine waters, including those of the World Heritage listed Great Barrier Reef (GBR). The few previous studies that have investigated herbicide persistence in seawater generally reported half-lives in the order of months, and several studies were too short to detect significant degradation. Here we investigated the persistence of eight herbicides commonly detected in the GBR or its catchments in standard OECD simulation flask experiments, but with the aim to mimic natural conditions similar to those found on the GBR (i.e., relatively low herbicide concentrations, typical temperatures, light and microbial communities). Very little degradation was recorded over the standard 60 d period (Experiment 1) so a second experiment was extended to 365 d. Half-lives of PSII herbicides ametryn, atrazine, diuron, hexazinone and tebuthiuron were consistently greater than a year, indicating high persistence. The detection of atrazine and diuron metabolites and longer persistence in mercuric chloride-treated seawater confirmed that biodegradation contributed to the breakdown of herbicides. The shortest half-life recorded was 88 d for growth-regulating herbicide 2,4-D at 31°C in the dark, while the fatty acid-inhibitor metolachlor exhibited a minimum half-life of 281 d. The presence of moderate light and elevated temperatures affected the persistence of most of the herbicides; however, the scale and direction of the differences were not predictable and were likely due to changes in microbial community composition. The persistence estimates here represent some of the first appropriate data for application in risk assessments for herbicide exposure in tropical marine systems. The long persistence of herbicides identified in the present study helps explain detection of herbicides in nearshore waters of the GBR year round. Little degradation of these herbicides would be expected during the wet season with runoff and associated flood plumes transporting a high proportion of the original herbicide from rivers into the GBR lagoon.


Asunto(s)
Monitoreo del Ambiente , Herbicidas/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Simulación por Computador , Semivida
20.
Aquat Toxicol ; 165: 73-83, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26026671

RESUMEN

Photosystem II herbicides from agricultural sources have been detected throughout nearshore tropical habitats including seagrass meadows. While PSII herbicides have been shown to inhibit growth in microalgae at low concentrations, the potential impacts of chronic low concentration exposures to seagrass health and growth have not been investigated. Here we exposed two tropical seagrass species Halodule uninervis and Zostera muelleri to elevated diuron concentrations (from 0.3 to 7.2µgl(-1)) over a 79-day period followed by a 2-week recovery period in uncontaminated seawater. PAM fluorometry demonstrated rapid effect of diuron on photosystem II (PSII) in both seagrass species at 0.3µgl(-1). This effect included significant inhibition of photosynthetic efficiency (ΔF/Fm') and inactivation of PSII (Fv/Fm) over the 11 week exposure period. Significant mortality and reductions in growth was only observed at the highest exposure concentration of 7.2µgl(-1) diuron. However, biochemical indicators demonstrated that the health of seagrass after this prolonged exposure was significantly compromised at lower concentrations. For example, the drop in C:N ratios (0.6µgl(-1)) and reduced δ(13)C (1.7µgl(-1)) in seagrass leaves indicated reduced C-assimilation from photosynthesis. Critically, the energetic reserves of the plants (as measured by starch content in the root-rhizome complex) were approximately halved following diuron exposure at and above 1.7µgl(-1). During the 2-week recovery period, the photosynthetic capacity of the seagrass improved with only plants from the highest diuron treatment still exhibiting chronic damage to PSII. This study shows that, although seagrass may survive prolonged herbicide exposures, concentrations ≥0.6µgl(-1) diuron equivalents cause measureable impacts on energetic status that may leave the plants vulnerable to other simultaneous stressors. For example, tropical seagrasses have been heavily impacted by reduced light from coastal flood plumes and the effects on plant energetics from light limitation and diuron exposure (highest in flood plumes) are very similar, potentially leading to cumulative negative effects.


Asunto(s)
Diurona/toxicidad , Contaminantes Químicos del Agua/toxicidad , Zosteraceae/efectos de los fármacos , Alismatales/efectos de los fármacos , Herbicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...