Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem C Nanomater Interfaces ; 116(30): 16319-16324, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-26644813

RESUMEN

It is well-known that ionic surfactant coated single-walled carbon nanotubes (SWNTs) possess higher near-infrared fluorescence (NIRF) quantum yield than nonionic polymer functionalized SWNTs. However, the influence of surface functionalization on the magnetic properties of SWNTs for T2-weighted magnetic resonance imaging (MRI) has not been reported. Here, we demonstrate that SWNTs functionalized by nonionic polymers display superior T2 relaxivity for MRI as compared to those coated by ionic surfactants. This difference may indicate that micelle structures formed by ionic surfactants are sufficiently tight to partially exclude water protons from the iron catalysts attached to the ends of SWNTs. On the basis of the different effects of the two types of suspension agents on NIRF and MRI of functionalized SWNTs, we further explore the competitive surface functionalization between ionic surfactants and nonionic polymers by stepwise replacing ionic surfactant molecules in a nanotube suspension with nonionic polymers. The superior NIRF of ionic surfactant coated SWNTs gradually quenches whereas no improvement on T2 relaxivity is observed during this replacement process. This result may indicate that nonionic polymers wrap around the outside of micelle structures to form small nanotube bundles rather than replacing ionic surfactants in the micelle structures to directly interact with the SWNT surface. Finally, we demonstrate the feasibility of dual-modality NIRF and MRI of nonionic polymer functionalized SWNTs in brain cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...