Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut ; 69(11): 2016-2024, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32114505

RESUMEN

OBJECTIVE: The HBV HBx regulatory protein is required for transcription from the covalently closed circular DNA (cccDNA) minichromosome and affects the epigenetic control of both viral and host cellular chromatin. DESIGN: We explored, in relevant cellular models of HBV replication, the functional consequences of HBx interaction with DLEU2, a long non-coding RNA (lncRNA) expressed in the liver and increased in human hepatocellular carcinoma (HCC), in the regulation of host target genes and the HBV cccDNA. RESULTS: We show that HBx binds the promoter region, enhances the transcription and induces the accumulation of DLEU2 in infected hepatocytes. We found that nuclear DLEU2 directly binds HBx and the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the catalytic active subunit of the polycomb repressor complex 2 (PRC2) complex. Computational modelling and biochemical evidence suggest that HBx and EZH2 share two preferential binding sites in DLEU2 intron 1. HBx and DLEU2 co-recruitment on the cccDNA displaces EZH2 from the viral chromatin to boost transcription and viral replication. DLEU2-HBx association with target host promoters relieves EZH2 repression and leads to the transcriptional activation of a subset of EZH2/PRC2 target genes in HBV-infected cells and HBV-related HCCs. CONCLUSIONS: Our results highlight the ability of HBx to bind RNA to impact on the epigenetic control of both viral cccDNA and host genes and provide a new key to understand the role of DLEU2 and EZH2 overexpression in HBV-related HCCs and HBx contribution to hepatocytes transformation.


Asunto(s)
Carcinoma Hepatocelular/etiología , Virus de la Hepatitis B/fisiología , Hepatocitos/patología , Neoplasias Hepáticas/etiología , Transactivadores/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Replicación Viral/fisiología , Técnicas de Cultivo de Célula , ADN Circular , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Hepatocitos/metabolismo , Humanos , ARN Largo no Codificante/metabolismo
2.
Sci Rep ; 8(1): 5390, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29599452

RESUMEN

Current therapies for chronic hepatitis B virus (HBV) infections are effective at decreasing the viral load in serum, but do not lead to viral eradication. Recent studies highlighted the therapeutic or "adjuvant" potential of immune-modulators. Our aim was to explore the direct anti-HBV effect of Toll-Like-Receptors (TLR) agonists in hepatocytes. HBV-infected primary human hepatocytes (PHH) or differentiated HepaRG cells (dHepaRG) were treated with various TLR agonists. Amongst all TLR ligands tested, Pam3CSK4 (TLR1/2-ligand) and poly(I:C)-(HMW) (TLR3/MDA5-ligand) were the best at reducing all HBV parameters. No or little viral rebound was observed after treatment arrest, implying a long-lasting effect on cccDNA. We also tested Riboxxol that features improved TLR3 specificity compared to poly(I:C)-(HMW). This agonist demonstrated a potent antiviral effect in HBV-infected PHH. Whereas, poly(I:C)-(HMW) and Pam3CSK4 mainly induced the expression of classical genes from the interferon or NF-κB pathway respectively, Riboxxol had a mixed phenotype. Moreover, TLR2 and TLR3 ligands can activate hepatocytes and immune cells, as demonstrated by antiviral cytokines produced by stimulated hepatocytes and peripheral blood mononuclear cells. In conclusion, our data highlight the potential of innate immunity activation in the direct control of HBV replication in hepatocytes, and support the development of TLR-based antiviral strategies.


Asunto(s)
Antivirales/farmacología , Virus de la Hepatitis B/fisiología , Receptores Toll-Like/agonistas , Replicación Viral/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Interferones/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Ligandos , Lipopéptidos/farmacología , FN-kappa B/metabolismo , Receptores Toll-Like/metabolismo
3.
BMC Genomics ; 18(1): 184, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28212627

RESUMEN

BACKGROUND: The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. RESULTS: ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. CONCLUSIONS: Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.


Asunto(s)
Genómica , Interacciones Huésped-Patógeno/genética , Transactivadores/metabolismo , Endocitosis , Células Hep G2 , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , MicroARNs/genética , Proteínas Reguladoras y Accesorias Virales , Replicación Viral
4.
J Hepatol ; 63(5): 1077-85, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26144659

RESUMEN

BACKGROUND & AIMS: HepaRG cells are considered as the best surrogate model to primary human hepatocyte (PHH) culture to investigate host-pathogen interactions. Yet their innate immune functions remain unknown. In this study, we explored the expression and functionality of Toll-like (TLR) and retinoic acid-inducible gene-1 (RIG-I)-like receptors (RLR) in these cells. METHODS: Gene and protein expression levels of TLR-1 to 9 and RLR in HepaRG were mainly compared to PHH, by RT-qPCR, FACS, and Western blotting. Their functionality was assessed, by measuring the induction of toll/rig-like themselves and several target innate gene expressions, as well as the secretion of IL-6, IP-10, and type I interferon (IFN), upon agonist stimulation. Their functionality was also shown by measuring the antiviral activity of some TLR/RLR agonists against hepatitis B virus (HBV) infection. RESULTS: The basal gene and protein expression profile of TLR/RLR in HepaRG cells was similar to PHH. Most receptors, except for TLR-7 and 9, were expressed as proteins and functionally active as shown by the induction of some innate genes, as well as by the secretion of IL-6 and IP-10, upon agonist stimulation. The highest levels of IL-6 and IP-10 secretion were obtained by TLR-2 and TLR-3 agonist stimulation respectively. The highest preventive anti-HBV activity was obtained following TLR-2, TLR-4 or RIG-I/MDA-5 stimulations, which correlated with their high capacity to produce both cytokines. CONCLUSIONS: Our results indicate that HepaRG cells express a similar pattern of functional TLR/RLR as compared to PHH, thus qualifying HepaRG cells as a surrogate model to study pathogen interactions within a hepatocyte innate system.


Asunto(s)
Proteína 58 DEAD Box/genética , ADN Viral/genética , Regulación de la Expresión Génica , Virus de la Hepatitis B/genética , Hepatitis B/genética , Hepatocitos/patología , Receptores Toll-Like/genética , Western Blotting , Células Cultivadas , Proteína 58 DEAD Box/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hepatitis B/metabolismo , Hepatitis B/virología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Citoplasmáticos y Nucleares , Receptores Inmunológicos , Receptores Toll-Like/biosíntesis , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...