Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(28): 12731-12741, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958431

RESUMEN

Effective synthesis and application of single-atom catalysts on supports lacking enough defects remain a significant challenge in environmental catalysis. Herein, we present a universal defect-enrichment strategy to increase the surface defects of CeO2-based supports through H2 reduction pretreatment. The Pt catalysts supported by defective CeO2-based supports, including CeO2, CeZrOx, and CeO2/Al2O3 (CA), exhibit much higher Pt dispersion and CO oxidation activity upon reduction activation compared to their counterpart catalysts without defect enrichment. Specifically, Pt is present as embedded single atoms on the CA support with enriched surface defects (CA-HD) based on which the highly active catalyst showing embedded Pt clusters (PtC) with the bottom layer of Pt atoms substituting the Ce cations in the CeO2 surface lattice can be obtained through reduction activation. Embedded PtC can better facilitate CO adsorption and promote O2 activation at PtC-CeO2 interfaces, thereby contributing to the superior low-temperature CO oxidation activity of the Pt/CA-HD catalyst after activation.


Asunto(s)
Monóxido de Carbono , Oxidación-Reducción , Platino (Metal) , Monóxido de Carbono/química , Platino (Metal)/química , Catálisis , Cerio/química , Adsorción , Propiedades de Superficie
2.
Proc Natl Acad Sci U S A ; 120(1): e2206850120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577066

RESUMEN

Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts.


Asunto(s)
Monóxido de Carbono , Hidrógeno , Monóxido de Carbono/química , Oxidación-Reducción , Catálisis , Hidrógeno/química , Platino (Metal)/química
3.
J Am Chem Soc ; 144(46): 21255-21266, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36322840

RESUMEN

The local coordination structure of metal sites essentially determines the performance of supported metal catalysts. Using a surface defect enrichment strategy, we successfully fabricated Pt atomic single-layer (PtASL) structures with 100% metal dispersion and precisely controlled local coordination environment (embedded vs adsorbed) derived from Pt single-atoms (Pt1) on ceria-alumina supports. The local coordination environment of Pt1 not only governs its catalytic activity but also determines the Pt1 structure evolution upon reduction activation. For CO oxidation, the highest turnover frequency can be achieved on the embedded PtASL in the CeO2 lattice, which is 3.5 times of that on the adsorbed PtASL on the CeO2 surface and 10-70 times of that on Pt1. The favorable CO adsorption on embedded PtASL and improved activation/reactivity of lattice oxygen within CeO2 effectively facilitate the CO oxidation. This work provides new insights for the precise control of the local coordination structure of active metal sites for achieving 100% atomic utilization efficiency and optimal intrinsic catalytic activity for targeted reactions simultaneously.

4.
J Am Chem Soc ; 143(51): 21567-21579, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34908398

RESUMEN

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. The atomic dispersion of Ni is paramount for selective ethanol to acetaldehyde conversion, and we show that even the presence of small Ni ensembles in the Au surface results in the formation of undesirable byproducts via C-C scission. Spectroscopic, kinetic, and theoretical investigations of the reaction mechanism reveal that both C-H and O-H bond cleavage steps are kinetically relevant and single Ni atoms are confirmed as the active sites. X-ray absorption spectroscopy studies allow us to follow the charge of the Ni atoms in the Au host before, under, and after a reaction cycle. Specifically, in the pristine state the Ni atoms carry a partial positive charge that increases upon coordination to the electronegative oxygen in ethanol and decreases upon desorption. This type of oxidation state cycling during reaction is similar to the behavior of single-site homogeneous catalysts. Given the unique electronic structure of many single-site catalysts, such a combined approach in which the atomic-scale catalyst structure and charge state of the single atom dopant can be monitored as a function of its reactive environment is a key step toward developing structure-function relationships that inform the design of new catalysts.

5.
Nat Commun ; 12(1): 1549, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750788

RESUMEN

The atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.

6.
Nature ; 589(7842): 396-401, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473229

RESUMEN

The water-gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1-Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production.

7.
Sci Adv ; 6(25): eaba3809, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596455

RESUMEN

The preferential oxidation of CO (PROX) in hydrogen-rich fuel gas streams is an attractive option to remove CO while effectively conserving energy and H2. However, high CO conversion with concomitant high selectivity to CO2 but not H2O is challenging. Here, we report the synthesis of high-loading single Pt atom (2.0 weight %) catalysts with oxygen-bonded alkaline ions that stabilize the cationic Pt. The synthesis is performed in aqueous solution and achieves high Pt atom loadings in a single-step incipient wetness impregnation of alumina or silica. Promisingly, these catalysts have high CO PROX selectivity even at high CO conversion (~99.8% conversion, 70% selectivity at 110°C) and good stability under reaction conditions. These findings pave the way for the design of highly efficient single-atom catalysts, elucidate the role of ─OH species in CO oxidation, and confirm the absence of a support effect for our case.

8.
Chem Rev ; 120(21): 12044-12088, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588624

RESUMEN

Single-atom alloys (SAAs) play an increasingly significant role in the field of single-site catalysis and are typically composed of catalytically active elements atomically dispersed in more inert and catalytically selective host metals. SAAs have been shown to catalyze a range of industrially important reactions in electro-, photo-, and thermal catalysis studies. Due to the unique geometry of SAAs, the location of the transition state and the binding site of reaction intermediates are often decoupled, which can enable both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis. Often, this results in deviations from transition metal scaling relationships that limit conventional catalysts. SAAs also offer reduced susceptibility to CO poisoning, cost savings from reduced precious metal usage, opportunities for bifunctional mechanisms via spillover, and higher resistance to deactivation by coking that plagues many industrial catalysts. In this review, we begin by introducing SAAs and describe how model systems and nanoparticle catalysts can be prepared and characterized. We then review all available SAA literature on a per reaction basis before concluding with a description of the general properties of this new class of heterogeneous catalysts and presenting opportunities for future research and development.

9.
Nat Chem ; 11(12): 1098-1105, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636391

RESUMEN

In an effort to obtain the maximum atom efficiency, research on heterogeneous single-atom catalysts has intensified recently. Anchoring organometallic homogeneous catalysts to surfaces creates issues with retaining mononuclearity and activity, while the several techniques developed to prepare atomically dispersed precious metals on oxide supports are usually complex. Here we report a facile one-pot synthesis of inorganometallic mononuclear gold complexes formed in alkaline solutions as robust and versatile single-atom gold catalysts. The complexes remain intact on impregnation onto supports or after drying in air to give a crystalline powder. They can be used to interrogate the nuclearity of the catalytically active gold site for reactions known to be catalysed by oxidized gold species. We show that the [Au1-Ox]- cluster directs the heterogeneous coupling of two methanol molecules to methyl formate and hydrogen with a 100% selectivity below 180 °C. The reaction is industrially important as well as the key step in methanol steam reforming on gold catalysts.

10.
Nat Commun ; 10(1): 3808, 2019 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444350

RESUMEN

Despite the maximized metal dispersion offered by single-atom catalysts, further improvement of intrinsic activity can be hindered by the lack of neighboring metal atoms in these systems. Here we report the use of isolated Pt1 atoms on ceria as "seeds" to develop a Pt-O-Pt ensemble, which is well-represented by a Pt8O14 model cluster that retains 100% metal dispersion. The Pt atom in the ensemble is 100-1000 times more active than their single-atom Pt1/CeO2 parent in catalyzing the low-temperature CO oxidation under oxygen-rich conditions. Rather than the Pt-O-Ce interfacial catalysis, the stable catalytic unit is the Pt-O-Pt site itself without participation of oxygen from the 10-30 nm-size ceria support. Similar Pt-O-Pt sites can be built on various ceria and even alumina, distinguishable by facile activation of oxygen through the paired Pt-O-Pt atoms. Extending this design to other reaction systems is a likely outcome of the findings reported here.

11.
Acc Chem Res ; 52(1): 237-247, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30540456

RESUMEN

Heterogeneous catalysts are workhorses in the industrial production of most commodity and specialty chemicals, and have widespread energy and environmental applications, with the annual market value of the catalysts themselves reaching almost $20 billion in 2018. These catalysts are complex, comprising multicomponent materials and multiple structures, making their rational design challenging, if not impossible. Furthermore, typical active metals like Pt, Pd, and Rh are expensive and can be susceptible to poisoning by CO, coking, and they are not always 100% selective. Efforts to use these elements sparingly and improve their selectivity has led to recent identification of single-atom heterogeneous catalysts in which individual transition metal atoms anchored on oxide or carbon-based supports are excellent catalysts for reactions like the CO oxidation, water-gas shift, alcohol dehydrogenation, and steam reforming. In this Account, we describe a new class of single-atom heterogeneous catalysts, namely, Single-Atom Alloys (SAAs) that comprise catalytically active elements like Pt, Pd, and Ni alloyed in more inert host metals at the single-atom limit. These materials evolved by complementary surface science and scanning probe studies using single crystals, and catalytic evaluation of the corresponding alloy nanoparticles with compositions informed by the surface science findings. The well-defined nature of the active sites in SAAs makes accurate modeling with theory relatively easy, enabling the rational design of SAA catalysts via a complementary three-prong approach, encompassing surface science model catalysts, theory, and real catalyst synthesis and testing under industrially relevant conditions. SAAs constitute one of just a few examples of when heterogeneous catalyst design has been guided by an understanding of fundamental surface processes. The Account starts by describing scanning tunneling microscopy studies of highly dilute alloys formed by doping small amounts of a catalytically active element into a more inert host metal. We first discuss hydrogenation reactions in which dissociation of H2 is often rate limiting. Results indicate how the SAA geometry allows the transition state and the binding site of the reaction intermediates to be decoupled, which enables both facile dissociation of reactants and weak binding of intermediates, two key factors for efficient and selective catalysis. These results were exploited to design the first PtCu SAA hydrogenation catalysts which showed high selectivity, stability and resistance to poisoning in industrially relevant hydrogenation reactions, such as the selective conversion of butadiene to butenes. Model studies also revealed spillover of hydrogen atoms from the Pt site where dissociation of H2 occurs to Cu sites where selective hydrogenation is facilitated in a bifunctional manner. We then discuss selective dehydrogenations on SAAs demonstrating that they enable efficient C-H activation, while being resistant to coking that plagues typical Pt catalysts. SAA PtCu nanoparticle catalysts showed excellent stability in butane dehydrogenation for days-on-stream at 400 °C. Another advantage of SAA catalysts is that on many alloy combinations CO, a common catalyst poison, binds more weakly to the alloy than the pure metal. We conclude by discussing recent theory results that predict the energetics of many key reaction steps on a wide range of SAAs and the exciting possibilities this reductionist approach to heterogeneous catalysis offers for the rational design of new catalysts.

12.
ACS Cent Sci ; 4(9): 1166-1172, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30276249

RESUMEN

Heterogeneous catalysts with atomically defined active centers hold great promise for high-performance applications. Among them, catalysts featuring active moieties with more than one metal atom are important for chemical reactions that require synergistic effects but are rarer than single atom catalysts (SACs). The difficulty in synthesizing such catalysts has been a key challenge. Recent progress in preparing dinuclear heterogeneous catalysts (DHCs) from homogeneous molecular precursors has provided an effective route to address this challenge. Nevertheless, only side-on bound DHCs, where both metal atoms are affixed to the supporting substrate, have been reported. The competing end-on binding mode, where only one metal atom is attached to the substrate and the other metal atom is dangling, has been missing. Here, we report the first observation that end-on binding is indeed possible for Ir DHCs supported on WO3. Unambiguous evidence supporting the binding mode was obtained by in situ diffuse reflectance infrared Fourier transform spectroscopy and high-angle annular dark-field scanning transmission electron microscopy. Density functional theory calculations provide additional support for the binding mode, as well as insights into how end-on bound DHCs may be beneficial for solar water oxidation reactions. The results have important implications for future studies of highly effective heterogeneous catalysts for complex chemical reactions.

13.
Proc Natl Acad Sci U S A ; 115(12): 2902-2907, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507243

RESUMEN

Atomically dispersed catalysts refer to substrate-supported heterogeneous catalysts featuring one or a few active metal atoms that are separated from one another. They represent an important class of materials ranging from single-atom catalysts (SACs) and nanoparticles (NPs). While SACs and NPs have been extensively reported, catalysts featuring a few atoms with well-defined structures are poorly studied. The difficulty in synthesizing such structures has been a critical challenge. Here we report a facile photochemical method that produces catalytic centers consisting of two Ir metal cations, bridged by O and stably bound to a support. Direct evidence unambiguously supporting the dinuclear nature of the catalysts anchored on α-Fe2O3 is obtained by aberration-corrected scanning transmission electron microscopy (AC-STEM). Experimental and computational results further reveal that the threefold hollow binding sites on the OH-terminated surface of α-Fe2O3 anchor the catalysts to provide outstanding stability against detachment or aggregation. The resulting catalysts exhibit high activities toward H2O photooxidation.

14.
Nat Chem ; 10(3): 325-332, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29461520

RESUMEN

The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

15.
Nature ; 551(7682): 605-608, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29189776

RESUMEN

An efficient and direct method of catalytic conversion of methane to liquid methanol and other oxygenates would be of considerable practical value. However, it remains an unsolved problem in catalysis, as typically it involves expensive or corrosive oxidants or reaction media that are not amenable to commercialization. Although methane can be directly converted to methanol using molecular oxygen under mild conditions in the gas phase, the process is either stoichiometric (and therefore requires a water extraction step) or is too slow and low-yielding to be practical. Methane could, in principle, also be transformed through direct oxidative carbonylation to acetic acid, which is commercially obtained through methane steam reforming, methanol synthesis, and subsequent methanol carbonylation on homogeneous catalysts. However, an effective catalyst for the direct carbonylation of methane to acetic acid, which might enable the economical small-scale utilization of natural gas that is currently flared or stranded, has not yet been reported. Here we show that mononuclear rhodium species, anchored on a zeolite or titanium dioxide support suspended in aqueous solution, catalyse the direct conversion of methane to methanol and acetic acid, using oxygen and carbon monoxide under mild conditions. We find that the two products form through independent pathways, which allows us to tune the conversion: three-hour-long batch-reactor tests conducted at 150 degrees Celsius, using either the zeolite-supported or the titanium-dioxide-supported catalyst, yield around 22,000 micromoles of acetic acid per gram of catalyst, or around 230 micromoles of methanol per gram of catalyst, respectively, with selectivities of 60-100 per cent. We anticipate that these unusually high activities, despite still being too low for commercial application, may guide the development of optimized catalysts and practical processes for the direct conversion of methane to methanol, acetic acid and other useful chemicals.

16.
J Am Chem Soc ; 138(20): 6396-9, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27167705

RESUMEN

Platinum catalysts are extensively used in the chemical industry and as electrocatalysts in fuel cells. Pt is notorious for its sensitivity to poisoning by strong CO adsorption. Here we demonstrate that the single-atom alloy (SAA) strategy applied to Pt reduces the binding strength of CO while maintaining catalytic performance. By using surface sensitive studies, we determined the binding strength of CO to different Pt ensembles, and this in turn guided the preparation of PtCu alloy nanoparticles (NPs). The atomic ratio Pt:Cu = 1:125 yielded a SAA which exhibited excellent CO tolerance in H2 activation, the key elementary step for hydrogenation and hydrogen electro-oxidation. As a probe reaction, the selective hydrogenation of acetylene to ethene was performed under flow conditions on the SAA NPs supported on alumina without activity loss in the presence of CO. The ability to maintain reactivity in the presence of CO is vital to other industrial reaction systems, such as hydrocarbon oxidation, electrochemical methanol oxidation, and hydrogen fuel cells.

17.
Nat Commun ; 6: 8550, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26449766

RESUMEN

Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum-copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C-C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.

18.
J Am Chem Soc ; 137(10): 3470-3, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25746682

RESUMEN

While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ∼120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing.

19.
Science ; 346(6216): 1498-501, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25431492

RESUMEN

We report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH)x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating -O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold active site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.

20.
J Am Chem Soc ; 136(8): 3238-45, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24502260

RESUMEN

We report on the direct promotional effect of sodium on the water-gas shift activity of platinum supported on oxygen-free multiwalled carbon nanotubes. Whereas the Na-free Pt catalysts are shown to be completely inactive, the addition of sodium is found to improve the water-gas shift activity to levels comparable to those obtained with highly active Pt catalysts on metal oxide supports. The structure and morphology of the catalyst surface was followed using aberration-corrected HAADF-STEM, which showed that atomically dispersed platinum species are stabilized by the addition of sodium. In situ atmospheric-pressure X-ray photoelectron spectroscopy (AP-XPS) experiments demonstrated that oxidized platinum Pt-OHx contributions in the Pt 4f signal are higher in the presence of sodium, providing evidence for a previously reported active-site structure of the form Pt-Nax-Oy-(OH)z. Pt remained oxidized in all redox experiments, even when a H2-rich gas mixture was used, but the extent of its oxidation followed the oxidation potential of the gas. These findings offer new insights into the nature of the active platinum-based site for the water-gas shift reaction. A strong inhibitory effect of hydrogen was observed on the reaction kinetics, effectively raising the apparent activation energy from 70 ± 5 kJ/mol (in product-free gas) to 105 ± 7 kJ/mol (in full reformate gas). Increased hydrogen uptake was observed on these materials when both Pt and Na were present on the catalyst, suggesting that hydrogen desorption might limit the water-gas shift reaction rate under such conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...