Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 64(10): 105022, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30970340

RESUMEN

Range verification is one of the most relevant tasks in ion beam therapy. In the case of carbon ion therapy, positron emission tomography (PET) is the most widely used method for this purpose, which images the [Formula: see text]-activation following nuclear interactions of the ions with the tissue nuclei. Since the positron emitter activity profile is not directly proportional to the dose distribution, until today only its comparison to a prediction of the PET profile allows for treatment verification. Usually, this prediction is obtained from time-consuming Monte Carlo simulations of high computational effort, which impacts the clinical workflow. To solve this issue in proton therapy, a convolution approach was suggested to predict positron emitter activity profiles from depth dose distributions analytically. In this work, we introduce an approach to predict positron emitter distributions from depth dose profiles in carbon ion therapy. While the distal fall-off position of the positron emitter profile is predicted from a convolution approach similar to the one suggested for protons, additional analytical functions are introduced to describe the characteristics of the positron emitter distribution in tissue. The feasibility of this approach is demonstrated with monoenergetic depth dose profiles and spread out Bragg peaks in homogeneous and heterogeneous phantoms. In all cases, the positron emitter profile is predicted with high precision and the distal fall-off position is reproduced with millimeter accuracy.


Asunto(s)
Radioterapia de Iones Pesados/métodos , Método de Montecarlo , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos
2.
Biol Sport ; 33(3): 285-9, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27601784

RESUMEN

Several factors can affect the magnitude of eccentric exercise (ECC)-induced muscle damage, but little is known regarding the effect of the range of motion (ROM) in ECC-induced muscle damage. The purpose of this study was to investigate whether elbow flexor ECC with 120° of ROM (from 60° of elbow flexion until elbow full extension - 180° [120ROM]) induces a greater magnitude of muscle damage compared with a protocol with 60° of ROM (120-180° of elbow flexion [60ROM]). Twelve healthy young men (age: 22 ± 3.1 years; height: 1.75 ± 0.05 m; body mass: 75.6 ± 13.6 kg) performed the ECC with 120ROM and 60ROM using different arms in a random order separated by 2 weeks and were tested before and 24, 48, 72 and 96 h after ECC for maximal voluntary isometric contraction torque (MVC-ISO), ROM and muscle soreness. The 120ROM protocol showed greater changes and effect sizes (ES) for MVC-ISO (-35%, ES: 1.97), ROM (-11.5°, ES: 1.27) and muscle soreness (19 mm, ES: 1.18) compared with the 60ROM protocol (-23%, ES: 0.93; -12%, ES: 0.56; 17°, ES: 0.63; 8 mm, ES: 1.07, respectively). In conclusion, ECC of the elbow flexors with 120° of ROM promotes a greater magnitude of muscle damage compared with a protocol with 60° of ROM, even when both protocols are performed at long muscle lengths.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA