Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475408

RESUMEN

Microelements are vital for plant growth and development [...].

2.
Fish Physiol Biochem ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787908

RESUMEN

The aim of our study was to determine the efficacy of utilizing cryopreserved common carp sperm (in comparison to fresh sperm) for propagation at a Hungarian aquaculture facility. The sperm was frozen in 5 mL straws using an extender method that was previously tested in common carp. Sperm motility was monitored using a computer-assisted sperm analysis system. The hatching and malformation rates among the specimens were recorded before the stocking of larvae in both groups. The growth (body weight, total length) and survival rates of the fish were measured during the pre-nursing (from May to June: between 1 and 26 days post hatching) and grow-out periods (from June to October: between 26 and 105 days post hatching) of the same year. The fresh sperm, which was collected and pooled prior to fertilization, showed high MOT (97%), pMOT (92%), VCL (106 µm s-1), LIN (75%), and ALH (1.84 µm). Prior to the fertilization trial of the cryopreserved sperm, low MOT (34%), pMOT (14%), and VCL (61 µm s-1) values were observed in frozen-thawed sperm. A significantly higher hatching rate was measured in the fresh sperm group (87%) when compared to the cryopreserved sperm group (42%). No significant difference in the overall malformation rate was observed in larvae originating from either the fresh or frozen sperm. A significant difference between the two test groups was observed in the incidence of deformed tails (fresh: 20%, cryopreserved: 55%). Except for one sampling period, no significant difference in the body weight and total length of the fish larvae was found between the two groups throughout the pre-nursing and grow-out periods. A significantly higher larvae survival rate was noted in the fresh sperm (72%) as compared to the cryopreserved group (43%) by the end of the pre-nursing stage. However, no significant difference in survival rate was observed for the cryopreserved sperm (96%) in comparison to the fresh sperm (95%) by the end of the grow-out stage. The results of this study showed, for the first time in large-scale pond culturing, an equal growth and viability in larvae propagated from cryopreserved sperm when compared to fresh sperm (despite the limited available rearing ponds provided by the commercial company).

3.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687350

RESUMEN

Micronutrient iron (Fe) deficiency poses a widespread agricultural challenge with global implications. Fe deficiency affects plant growth and immune function, leading to reduced yields and contributing to the global "hidden hunger." While conventional Fe-based fertilizers are available, their efficacy is limited under certain conditions. Most recently, nanofertilizers have been shown as promising alternatives to conventional fertilizers. In this study, three nanohematite/nanoferrihydrite preparations (NHs) with different coatings were applied through the roots and shoots to Fe-deficient cucumber plants. To enhance Fe mobilization to leaves during foliar treatment, the plants were pre-treated with various acids (citric acid, ascorbic acid, and glycine) at a concentration of 0.5 mM. Multiple physiological parameters were examined, revealing that both root and foliar treatments resulted in improved chlorophyll content, biomass, photosynthetic parameters, and reduced ferric chelate reductase activity. The plants also significantly accumulated Fe in their developing leaves and its distribution after NHs treatment, detected by X-ray fluorescence mapping, implied long-distance mobilization in their veins. These findings suggest that the applied NHs effectively mitigated Fe deficiency in cucumber plants through both modes of application, highlighting their potential as nanofertilizers on a larger scale.

4.
NanoImpact ; 29: 100444, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470408

RESUMEN

Nanoscale Fe containing particles can penetrate the root apoplast. Nevertheless, cell wall size exclusion questions that for Fe mobilisation, a close contact between the membrane integrating FERRIC REDUCTASE OXIDASE (FRO) enzymes and Fe containing particles is required. Haematite nanoparticle suspension, size of 10-20 nm, characterized by 57Fe Mössbauer spectroscopy, TEM, ICP and SAED was subjected to Fe utilisation by the flavin secreting model plant cucumber (Cucumis sativus). Alterations in the structure and distribution of the particles were revealed by 57Fe Mössbauer spectroscopy, HRTEM and EDS element mapping. Biological utilisation of Fe resulted in a suppression of Fe deficiency responses (expression of CsFRO 1, 2 & 3 and RIBOFLAVIN A1; CsRIBA1 genes and root ferric chelate reductase activity). Haematite nanoparticles were stacked in the middle lamella of the apoplast. Fe mobilisation is evidenced by the reduction in the particle size. Fe release from nanoparticles does not require a contact with the plasma membrane. Parallel suppression in the CsFRO 1&3 and CsRIBA1 transcript amounts support that flavin biosynthesis is an inclusive Fe deficiency response involved in the reduction-based Fe utilisation of Cucumis sativus roots. CsFRO2 is suggested to play a role in the intracellular Fe homeostasis.


Asunto(s)
Cucumis sativus , Hierro , Hierro/metabolismo , Oxidorreductasas/metabolismo , Transporte Biológico , Flavinas/metabolismo
5.
Plants (Basel) ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36501267

RESUMEN

Thinopyrum obtusiflorum (syn. Elymus elongatus subsp. ponticus) cv. Szarvasi-1 (Poaceae, Triticeae) is a biomass plant with significant tolerance to certain metals. To reveal its accumulation capacity, we investigated its Zn uptake and tolerance in a wide range: 0.2 to 1000 µM Zn concentration. The root and shoot weight, shoot length, shoot water content and stomatal conductance proved to be only sensitive to the highest applied Zn concentrations, whereas the concentration of malondialdehyde increased only at the application of 1 mM Zn in the leaves. Although physiological status proved to be hardy against Zn exposure, shoot Zn content significantly increased in parallel with the applied Zn treatment, reaching the highest Zn concentration at 1.9 mg g-1 dry weight. The concentration of K, Mg and P considerably decreased in the shoot at the highest Zn exposures, where that of K and P also correlated with a decrease in water content. Although the majority of microelements remained unaffected, Mn decreased in the root and Fe content had a negative correlation with Zn both in the shoot and root. In turn, the application of excessive EDTA maintained a proper Fe supply for the plants but lowered Zn accumulation both in roots and shoots. Thus, the Fe-Zn competition for Fe chelating phytosiderophores and/or for root uptake transporters fundamentally affects the Zn accumulation properties of Szarvasi-1. Indeed, the considerable Zn tolerance of Szarvasi-1 has a high potential in Zn accumulation.

6.
Plants (Basel) ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365431

RESUMEN

S-methylmethionine (SMM) is a universal metabolite of higher plants derived from L-methionine that has an approved priming effect under different types of abiotic and biotic stresses. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1) is a biomass plant increasingly applied in phytoremediation to stabilize or extract heavy metals. In this study, Szarvasi-1 was grown in a nutrient solution. As a priming agent, SMM was applied in 0.02, 0.05 and 0.1 mM concentrations prior to 0.01 mM Cd addition. The growth and physiological parameters, as well as the accumulation pattern of Cd and essential mineral nutrients, were investigated. Cd exposure decreased the root and shoot growth, chlorophyll concentration, stomatal conductance, photosystem II function and increased the carotenoid content. Except for stomatal conductance, SMM priming had a positive effect on these parameters compared to Cd treatment without priming. In addition, it decreased the translocation and accumulation of Cd. Cd treatment decreased K, Mg, Mn, Zn and P in the roots, and K, S, Cu and Zn in the shoots compared to the untreated control. SMM priming changed the pattern of nutrient uptake, of which Fe showed characteristic accumulation in the roots in response to increasing SMM concentrations. We have concluded that SMM priming exerts a positive effect on Cd-stressed Szarvasi-1 plants, which retained their physiological performance and growth. This ameliorative effect is suggested to be based on, at least partly, the lower root-to-shoot Cd translocation by the upregulated Fe uptake and transport.

7.
Photochem Photobiol Sci ; 21(6): 983-996, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35199321

RESUMEN

Iron (Fe) is an essential cofactor for all livings. Although Fe membrane transport mechanisms often utilize FeII, uncoordinated or deliberated ferrous ions can initiate Fenton reactions. FeIII citrate complexes are among the most important complexed forms of FeIII especially in plants that, indeed, can undergo photoreduction. Since leaves as photosynthetic organs of higher plants are generally exposed to illumination in daytime, photoreaction of ferric species may have biological relevance in iron metabolism, the relevance of which is poorly understood. In present work FeIII citrate transformation during the photodegradation in solution and after foliar application on leaves was studied by Mössbauer analysis directly. To obtain irradiation time dependence of the speciation of iron in solutions, four model solutions of different pH values (1.5, 3.3, 5.5, and 7.0) with Fe to citrate molar ratio 1:1.1 were exposed to light. Highly acidic conditions led to a complete reduction of Fe together with the formation of FeII citrate and hexaaqua complexes in equal concentration. At higher pH, the only product of the photodegradation was FeII citrate, which was later reoxidized and polymerized, resulting in the formation of polynuclear stable ferric compound. To test biological relevance, leaves of cabbage were treated with FeIII citrate solution. X-ray fluorescence imaging indicated the accumulation of Fe in the treated leaf parts. Mössbauer analysis revealed the presence of several ferric species incorporated into the biological structure. The Fe speciation observed should be considered in biological systems where FeIII citrate has a ubiquitous role in Fe acquisition and homeostasis.


Asunto(s)
Compuestos Férricos , Hierro , Citratos/química , Ácido Cítrico , Compuestos Férricos/química , Hierro/química , Fotólisis , Plantas/metabolismo
8.
Anal Chem ; 93(34): 11660-11668, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34403244

RESUMEN

An optimized micro-X-ray fluorescence confocal imaging (µXRF-CI) analytical method has been developed to determine the 2D distribution of elemental composition in small (1-3 mm) biological objects at a 10-20 µm spatial resolution. Plants take up chemical elements from soil, and the vascular system transports them toward shoots. In order to obtain biochemical information related to this biological process, 2D distributions of chemical elements in roots and in hypocotyls of cucumber plants were analyzed by synchrotron radiation based on micro-X-ray fluorescence computer tomography and µXRF-CI techniques. The experiments were carried out at HASYLAB Beamline L of the DORIS-III storage ring in Hamburg, a facility that provided optimal physical conditions for developing and performing these unique analyses: high flux monochromatic synchrotron beam, X-ray optical elements, precision moving stages, and silicon drift detectors. New methodological improvements and experimental studies were carried out for applicability of lyophilized samples and cryo-cooling. Experimental parameters were optimized to maximize the excitation yield of arsenic Kα radiation and improvement of the spatial resolution of the µXRF-CI analytical method.


Asunto(s)
Arsénico , Cucumis sativus , Hipocótilo , Espectrometría por Rayos X , Sincrotrones , Rayos X
9.
Front Plant Sci ; 12: 658987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093616

RESUMEN

Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.

10.
Planta ; 251(5): 96, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32297017

RESUMEN

MAIN CONCLUSION: The accumulation of NiCo following the termination of the accumulation of iron in chloroplast suggests that NiCo is not solely involved in iron uptake processes of chloroplasts. Chloroplast iron (Fe) uptake is thought to be operated by a complex containing permease in chloroplast 1 (PIC1) and nickel-cobalt transporter (NiCo) proteins, whereas the role of other Fe homeostasis-related transporters such as multiple antibiotic resistance protein 1 (MAR1) is less characterized. Although pieces of information exist on the regulation of chloroplast Fe uptake, including the effect of plant Fe homeostasis, the whole system has not been revealed in detail yet. Thus, we aimed to follow leaf development-scale changes in the chloroplast Fe uptake components PIC1, NiCo and MAR1 under deficient, optimal and supraoptimal Fe nutrition using Brassica napus as model. Fe deficiency decreased both the photosynthetic activity and the Fe content of plastids. Supraoptimal Fe nutrition caused neither Fe accumulation in chloroplasts nor any toxic effects, thus only fully saturated the need for Fe in the leaves. In parallel with the increasing Fe supply of plants and ageing of the leaves, the expression of BnPIC1 was tendentiously repressed. Though transcript and protein amount of BnNiCo tendentiously increased during leaf development, it was even markedly upregulated in ageing leaves. The relative transcript amount of BnMAR1 increased mainly in ageing leaves facing Fe deficiency. Taken together chloroplast physiology, Fe content and transcript amount data, the exclusive participation of NiCo in the chloroplast Fe uptake is not supported. Saturation of the Fe requirement of chloroplasts seems to be linked to the delay of decomposing the photosynthetic apparatus and keeping chloroplast Fe homeostasis in a rather constant status together with a supressed Fe uptake machinery.


Asunto(s)
Brassica napus/enzimología , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Proteínas de Transporte de Catión/genética , Cloroplastos/metabolismo , Cobalto/metabolismo , Homeostasis , Deficiencias de Hierro , Proteínas de Transporte de Membrana/genética , Níquel/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Reprod Domest Anim ; 54(3): 639-645, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30488550

RESUMEN

In our study, a traditionally used (Grayling, already used in cyprinid species) and a newly tested (Pike) extender was tested to avoid sperm agglutination phenomenon following thawing during carp sperm cryopreservation. A large-scale (elevated volume of sperm) freezing method in a controlled-rate freezer using 5 ml straw and 10 ml cryotube was also systematically established. In all experiments, the sperm cryopreserved in using Grayling extender (except only one sample) showed an agglutination phenomenon (damaged and intact cells adhered to each other) after thawing where Pike extender resulted the regular cell suspension. No significant difference was observed between the two cryopreserved groups (Pike and Grayling extender) in all motility parameters using the 0.5 ml straw and the polystyrene box. Similarly, motility parameters did not show a significant difference in the two frozen groups with the 5 ml straw, also in the polystyrene box. A significantly higher progressive motility (pMOT, Grayling: 54% ± 8%, Pike: 37% ± 5%), straight line velocity (VSL, Grayling: 50 ± 5 µm/s, Pike: 39 ± 4 µm/s) and beat cross frequency (BCF, Grayling: 20 ± 1 Hz, Pike: 17 ± 1 Hz) was observed in the case of the grayling extender by the 5 ml straw cryopreserved in a controlled-rate freezer (CRF) compare to the pike extender. A significantly higher VSL (Grayling: 45 ± 3 µm/s, Pike: 38 ± 4 µm/s) was observed by the grayling extender using the 10 ml cryotube than with the pike extender. Despite the randomly occurring differences in a few parameters, our new controlled freezing method using the newly tested Pike extender, the 5 ml straw or the 10 ml cryotube can be a good solution for the preservation of elevated volume of carp sperm.


Asunto(s)
Carpas , Criopreservación/veterinaria , Congelación , Preservación de Semen/veterinaria , Espermatozoides/fisiología , Animales , Criopreservación/métodos , Crioprotectores/farmacología , Masculino , Preservación de Semen/métodos , Aglutinación Espermática/efectos de los fármacos , Motilidad Espermática , Espermatozoides/efectos de los fármacos
12.
Planta ; 249(3): 751-763, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30382344

RESUMEN

MAIN CONCLUSION: Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Brassica napus/metabolismo , Cloroplastos/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectroscopía de Mossbauer , Transcriptoma
13.
Plant Physiol Biochem ; 118: 579-588, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28787660

RESUMEN

The growing concern over the environmental risk of synthetic chelate application promotes the search for alternatives in Fe fertilization, such as biodegradable chelating agents and natural complexing agents. In this work, plant responses to the application of several Fe treatments (chelates and complexes) was analyzed to study their potential use in Fe fertilization under calcareous conditions. Thus, the root ferric chelate reductase (FCR) activity of soybean (Glycine max cv. Klaxon) plants was determined, and the effectiveness of the Fe chelates and complexes assessed in a pot experiment, by SPAD and fluorescence induction measurements, and the determination of Fe distribution in plant and soil. Additionally, 57Fe Mössbauer spectroscopy was conducted to identify the Fe forms present in the soybean roots. The highest FCR activity was observed for the chelates EDDS/Fe3+ and IDHA/Fe3+; while no activity was observed when using complexes as Fe substrates. In contrast to the FCR data, the pot experiment confirmed that the o,oEDDHA/Fe3+ is the most effective treatment, and the complexes LS/Fe3+ and GA/Fe3+ are able to alleviate Fe chlorosis, also indicated by SPAD data and the maximal quantum efficiency of photosystem II reaction centers as vitality parameters, and the enhanced plant uptake of Fe from natural sources.


Asunto(s)
Glycine max/metabolismo , Quelantes del Hierro/farmacología , Hierro , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Hierro/metabolismo , Hierro/farmacología , Quelantes del Hierro/farmacocinética
14.
Plant Physiol Biochem ; 118: 627-633, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28803071

RESUMEN

Sewage sludge (SS) originating from communal wastewater is a hazardous material but have a potentially great nutritive value. Its disposal after treatment in agricultural lands can be a very economical and safe way of utilization once fast growing, high biomass, perennial plants of renewable energy production are cultivated. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1), a good candidate for this application, was grown in hydroponics in order to assess its metal accumulation and tolerance under increasing SS amendments. The applied SS had a composition characteristic to SS from communal wastes and did not contain any toxic heavy metal contamination from industrial sludge in high concentration. Toxic effects was assessed in quarter strength Hoagland nutrient solution and only the two highest doses (12.5-18.75 g dm-3) caused decreases in root growth, shoot water content and length and stomatal conductance whereas shoot growth, root water content, chlorophyll concentration and the maximal quantum efficiency of photosystem II was unaffected. Shoot K, Ca, Mg, Mn, Zn and Cu content decreased but Na and Ni increased in the shoot compared to the unamended control. The nutritive effect was tested in 1/40 strength Hoagland solution and only the highest dose (12.5 g dm-3) decreased root growth and stomatal conductance significantly while lower doses (1.25-6.25 g dm-3) had a stimulative effect. Shoot K, Na, Fe and Ni increased and Ca, Mg, Mn, Zn and Cu decreased in this treatment. It was concluded that SS with low heavy metal content can be a potentially good fertilizer for high biomass non-food crops such as Szarvasi-1 energy grass.


Asunto(s)
Elymus/crecimiento & desarrollo , Hidroponía , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Estomas de Plantas/crecimiento & desarrollo , Aguas del Alcantarillado , Complejo de Proteína del Fotosistema II/metabolismo
15.
Z Naturforsch C J Biosci ; 71(9-10): 323-334, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27542199

RESUMEN

Cadmium (Cd), a highly toxic heavy metal affects growth and metabolic pathways in plants, including photosynthesis. Though Cd is a transition metal with no redox capacity, it generates reactive oxygen species (ROS) indirectly and causes oxidative stress. Nevertheless, the mechanisms involved in long-term Cd tolerance of poplar, candidate for Cd phytoremediation, are not well known. Hydroponically cultured poplar (Populus jacquemontiana var. glauca cv. 'Kopeczkii') plants were treated with 10 µM Cd for 4 weeks. Following a period of functional decline, the plants performed acclimation to the Cd induced oxidative stress as indicated by the decreased leaf malondialdehyde (MDA) content and the recovery of most photosynthetic parameters. The increased activity of peroxidases (PODs) could have a great impact on the elimination of hydrogen peroxide, and thus the recovery of photosynthesis, while the function of superoxide dismutase (SOD) isoforms seemed to be less important. Re-distribution of the iron content of leaf mesophyll cells into the chloroplasts contributed to the biosynthesis of the photosynthetic apparatus and some antioxidative enzymes. The delayed increase in photosynthetic activity in relation to the decline in the level of lipid peroxidation indicates that elimination of oxidative stress damage by acclimation mechanisms is required for the restoration of the photosynthetic apparatus during long-term Cd treatment.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/toxicidad , Cloroplastos/efectos de los fármacos , Hierro/metabolismo , Populus/efectos de los fármacos , Adaptación Fisiológica , Biodegradación Ambiental/efectos de los fármacos , Cadmio/metabolismo , Clorofila/metabolismo , Clorofila A , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Hidroponía/métodos , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Populus/metabolismo , Populus/fisiología , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Factores de Tiempo
16.
Planta ; 244(6): 1303-1313, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27541495

RESUMEN

MAIN CONCLUSION: Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd2+, Zn2+, and Mn2+) enhanced, whereas oxoanions (NO3-, SO42-, and BO33-) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.


Asunto(s)
Transporte Biológico Activo/fisiología , Cloroplastos/metabolismo , Hierro/metabolismo , Beta vulgaris/metabolismo , Beta vulgaris/fisiología , Transporte Biológico Activo/efectos de los fármacos , Cadmio/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Diurona/farmacología , Herbicidas/farmacología , Manganeso/metabolismo , Espectroscopía de Mossbauer , Zinc/metabolismo
17.
J Plant Physiol ; 202: 97-106, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27478934

RESUMEN

Photosynthetic symptoms of acute Cd stress can be remedied by elevated Fe supply. To shed more light on the most important aspects of this recovery, the detailed Fe trafficking and accumulation processes as well as the changes in the status of the photosynthetic apparatus were investigated in recovering poplar plants. The Cd-free, Fe-enriched nutrient solution induced an immediate intensive Fe uptake. The increased Fe/Cd ratio in the roots initiated the translocation of Fe to the leaf with a short delay that ultimately led to the accumulation of Fe in the chloroplasts. The chloroplast Fe uptake was directly proportional to the Fe translocation to leaves. The accumulation of PSI reaction centers and the recovery of PSII function studied by Blue-Native PAGE and chlorophyll a fluorescence induction measurements, respectively, began in parallel to the increase in the Fe content of chloroplasts. The initial reorganization of PSII was accompanied by a peak in the antennae-based non-photochemical quenching. In conclusion, Fe accumulation of the chloroplasts is a process of prime importance in the recovery of photosynthesis from acute Cd stress.


Asunto(s)
Cadmio/farmacología , Cloroplastos/metabolismo , Hierro/metabolismo , Fotosíntesis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Populus/efectos de los fármacos , Populus/crecimiento & desarrollo , Populus/metabolismo , Tilacoides/metabolismo
18.
Planta ; 244(1): 167-79, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27002973

RESUMEN

MAIN CONCLUSION: Fe deficiency responses in Strategy I causes a shift from the formation of partially removable hydrous ferric oxide on the root surface to the accumulation of Fe-citrate in the xylem. Iron may accumulate in various chemical forms during its uptake and assimilation in roots. The permanent and transient Fe microenvironments formed during these processes in cucumber which takes up Fe in a reduction based process (Strategy I) have been investigated. The identification of Fe microenvironments was carried out with (57)Fe Mössbauer spectroscopy and immunoblotting, whereas reductive washing and high-resolution microscopy was applied for the localization. In plants supplied with (57)Fe(III)-citrate, a transient presence of Fe-carboxylates in removable forms and the accumulation of partly removable, amorphous hydrous ferric oxide/hydroxyde have been identified in the apoplast and on the root surface, respectively. The latter may at least partly be the consequence of bacterial activity at the root surface. Ferritin accumulation did not occur at optimal Fe supply. Under Fe deficiency, highly soluble ferrous hexaaqua complex is transiently formed along with the accumulation of Fe-carboxylates, likely Fe-citrate. As (57)Fe-citrate is non-removable from the root samples of Fe deficient plants, the major site of accumulation is suggested to be the root xylem. Reductive washing results in another ferrous microenvironment remaining in the root apoplast, the Fe(II)-bipyridyl complex, which accounts for ~30 % of the total Fe content of the root samples treated for 10 min and rinsed with CaSO4 solution. When (57)Fe(III)-EDTA or (57)Fe(III)-EDDHA was applied as Fe-source higher soluble ferrous Fe accumulation was accompanied by a lower total Fe content, confirming that chelates are more efficient in maintaining soluble Fe in the medium while less stable natural complexes as Fe-citrate may perform better in Fe accumulation.


Asunto(s)
Cucumis sativus/metabolismo , Hierro/metabolismo , Raíces de Plantas/metabolismo , Xilema/metabolismo , Cucumis sativus/ultraestructura , Compuestos Férricos/metabolismo , Immunoblotting , Compuestos de Hierro/metabolismo , Microscopía Electrónica , Oxidación-Reducción , Raíces de Plantas/ultraestructura , Espectroscopía de Mossbauer
19.
New Phytol ; 202(3): 920-928, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24506824

RESUMEN

Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.


Asunto(s)
Beta vulgaris/enzimología , Cloroplastos/enzimología , FMN Reductasa/metabolismo , Beta vulgaris/efectos de los fármacos , Beta vulgaris/fisiología , Cloroplastos/efectos de los fármacos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Hierro/farmacología , Deficiencias de Hierro , Péptidos/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo
20.
J Agric Food Chem ; 61(50): 12200-10, 2013 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-24224795

RESUMEN

Water-soluble humic substances (denoted by LN) extracted at alkaline pH from leonardite are proposed to be used as complexing agents to overcome micronutrient deficiencies in plants such as iron chlorosis. LN presents oxidized functional groups that can bind Fe(2+) and Fe(3+). The knowledge of the environment of Fe in the Fe-LN complexes is a key point in the studies on their efficacy as Fe fertilizers. The aim of this work was to study the Fe(2+)/Fe(3+) species formed in Fe-LN complexes with (57)Fe Mössbauer spectroscopy under different experimental conditions in relation to the Fe-complexing capacities, chemical characteristics, and efficiency to provide iron in hydroponics. A high oxidation rate of Fe(2+) to Fe(3+) was found when samples were prepared with Fe(2+), although no well-crystalline magnetically ordered ferric oxide formation could be observed in slightly acidic or neutral media. It seems to be the case that the formation of Fe(3+)-LN compounds is favored over Fe(2+)-LN compounds, although at acidic pH no complex formation between Fe(3+) and LN occurred. The Fe(2+)/Fe(3+) speciation provided by the Mössbauer data showed that Fe(2+)-LN could be efficient in hydroponics while Fe(3+)-LN is suggested to be used more effectively under calcareous soil conditions. However, according to the biological assay, Fe(3+)-LN proved to be effective as a chlorosis corrector applied to iron-deficient cucumber in nutrient solution.


Asunto(s)
Fertilizantes/análisis , Sustancias Húmicas/análisis , Quelantes del Hierro/química , Hierro/química , Minerales/química , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/metabolismo , Hierro/metabolismo , Cinética , Oxidación-Reducción , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...