Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108191, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37953951

RESUMEN

Assignment of biological sex to skeletal remains is critical in the accurate reconstruction of the past. Analysis of sex-chromosome encoded AMELX and AMELY peptides from the enamel protein amelogenin underpins a minimally destructive mass spectrometry (MS) method for sex determination of human remains. However, access to such specialist approaches limits applicability. As a convenient alternative, we generated antibodies that distinguish human AMELX and AMELY. Purified antibodies demonstrated high selectivity and quantitative detection against synthetic peptides by ELISA. Using acid etches of enamel from post-medieval skeletons, antibody determinations corrected osteological uncertainties and matched parallel MS, and for Bronze Age samples where only enamel was preserved, also matched MS analyses. Toward improved throughput, automated stations were applied to analyze 19th-century teeth where sex of individuals was documented, confirming MS can be bypassed. Our immunological tools should underpin development of routine, economical, high-throughput methods for sex determination, potentially even in a field setting.

2.
Front Neurol ; 10: 578, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244752

RESUMEN

MicroRNAs (miRNAs) represent potential biomarkers for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). However, whether expression changes of individual miRNAs are simply an indication of cellular dysfunction and degeneration, or actually promote functional changes in target gene expression relevant to disease pathogenesis, is unclear. Here we used bioinformatics to test the hypothesis that ALS-associated miRNAs exert their effects through targeting genes implicated in disease etiology. We documented deregulated miRNAs identified in studies of ALS patients, noting variations in participants, tissue samples, miRNA detection or quantification methods used, and functional or bioinformatic assessments (if performed). Despite lack of experimental standardization, overlap of many deregulated miRNAs between studies was noted; however, direction of reported expression changes did not always concur. The use of in silico predictions of target genes for the most commonly deregulated miRNAs, cross-referenced to a selection of previously identified ALS genes, did not support our hypothesis. Specifically, although deregulated miRNAs were predicted to commonly target ALS genes, random miRNAs gave similar predictions. To further investigate biological patterns in the deregulated miRNAs, we grouped them by tissue source in which they were identified, indicating that for a core of frequently detected miRNAs, blood/plasma/serum may be useful for future profiling experiments. We conclude that in silico predictions of gene targets of deregulated ALS miRNAs, at least using currently available algorithms, are unlikely to be sufficient in informing disease pathomechanisms. We advocate experimental functional testing of candidate miRNAs and their predicted targets, propose miRNAs to prioritise, and suggest a concerted move towards protocol standardization for biomarker identification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA