Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Nat Rev Nephrol ; 20(7): 473-485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38570631

RESUMEN

Early detection is a key strategy to prevent kidney disease, its progression and related complications, but numerous studies show that awareness of kidney disease at the population level is low. Therefore, increasing knowledge and implementing sustainable solutions for early detection of kidney disease are public health priorities. Economic and epidemiological data underscore why kidney disease should be placed on the global public health agenda - kidney disease prevalence is increasing globally and it is now the seventh leading risk factor for mortality worldwide. Moreover, demographic trends, the obesity epidemic and the sequelae of climate change are all likely to increase kidney disease prevalence further, with serious implications for survival, quality of life and health care spending worldwide. Importantly, the burden of kidney disease is highest among historically disadvantaged populations that often have limited access to optimal kidney disease therapies, which greatly contributes to current socioeconomic disparities in health outcomes. This joint statement from the International Society of Nephrology, European Renal Association and American Society of Nephrology, supported by three other regional nephrology societies, advocates for the inclusion of kidney disease in the current WHO statement on major non-communicable disease drivers of premature mortality.


Asunto(s)
Salud Global , Salud Pública , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Consenso , Factores de Riesgo
2.
J Clin Invest ; 134(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488009

RESUMEN

Uncontrolled accumulation of extracellular matrix leads to tissue fibrosis and loss of organ function. We previously demonstrated in vitro that the DNA/RNA-binding protein fused in sarcoma (FUS) promotes fibrotic responses by translocating to the nucleus, where it initiates collagen gene transcription. However, it is still not known whether FUS is profibrotic in vivo and whether preventing its nuclear translocation might inhibit development of fibrosis following injury. We now demonstrate that levels of nuclear FUS are significantly increased in mouse models of kidney and liver fibrosis. To evaluate the direct role of FUS nuclear translocation in fibrosis, we used mice that carry a mutation in the FUS nuclear localization sequence (FUSR521G) and the cell-penetrating peptide CP-FUS-NLS that we previously showed inhibits FUS nuclear translocation in vitro. We provide evidence that FUSR521G mice or CP-FUS-NLS-treated mice showed reduced nuclear FUS and fibrosis following injury. Finally, differential gene expression analysis and immunohistochemistry of tissues from individuals with focal segmental glomerulosclerosis or nonalcoholic steatohepatitis revealed significant upregulation of FUS and/or collagen genes and FUS protein nuclear localization in diseased organs. These results demonstrate that injury-induced nuclear translocation of FUS contributes to fibrosis and highlight CP-FUS-NLS as a promising therapeutic option for organ fibrosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , ARN , Animales , Ratones , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mutación , ADN , Fibrosis , Colágeno/metabolismo , Esclerosis Amiotrófica Lateral/genética
3.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38377486

RESUMEN

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Asunto(s)
Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales , Fibrilación Atrial , Modelos Animales de Enfermedad , Interleucina-1beta , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/genética , Humanos , Potenciales de Acción/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Estrés Oxidativo/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Predisposición Genética a la Enfermedad , Bencilaminas/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Mediadores de Inflamación/metabolismo , Transducción de Señal , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fenotipo
4.
Kidney Int ; 105(6): 1200-1211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423183

RESUMEN

Podocyte injury and loss are hallmarks of diabetic nephropathy (DN). However, the molecular mechanisms underlying these phenomena remain poorly understood. YAP (Yes-associated protein) is an important transcriptional coactivator that binds with various other transcription factors, including the TEAD family members (nuclear effectors of the Hippo pathway), that regulate cell proliferation, differentiation, and apoptosis. The present study found an increase in YAP phosphorylation at S127 of YAP and a reduction of nuclear YAP localization in podocytes of diabetic mouse and human kidneys, suggesting dysregulation of YAP may play a role in diabetic podocyte injury. Tamoxifen-inducible podocyte-specific Yap gene knockout mice (YappodKO) exhibited accelerated and worsened diabetic kidney injury. YAP inactivation decreased transcription factor WT1 expression with subsequent reduction of Tead1 and other well-known targets of WT1 in diabetic podocytes. Thus, our study not only sheds light on the pathophysiological roles of the Hippo pathway in diabetic podocyte injury but may also lead to the development of new therapeutic strategies to prevent and/or treat DN by targeting the Hippo signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones Noqueados , Fosfoproteínas , Podocitos , Transducción de Señal , Factores de Transcripción , Proteínas WT1 , Proteínas Señalizadoras YAP , Podocitos/metabolismo , Podocitos/patología , Animales , Proteínas WT1/metabolismo , Proteínas WT1/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Humanos , Fosforilación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Factores de Transcripción de Dominio TEA/metabolismo , Vía de Señalización Hippo , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Ratones Endogámicos C57BL , Tamoxifeno/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
5.
Pediatr Nephrol ; 39(8): 2301-2308, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38191938

RESUMEN

The intricate relationship between tubular injury and glomerular dysfunction in kidney diseases has been a subject of extensive research. While the impact of glomerular injury on downstream tubules has been well-studied, the reverse influence of tubular injury on the glomerulus remains less explored. This paper provides a comprehensive review of recent advances in the field, focusing on key pathways and players implicated in the pathogenesis of tubular injury on glomerular dysfunction. Anatomical and physiological evidence supports the possibility of crosstalk from the tubule to the glomerulus, whereby various mechanisms contribute to glomerular injury following tubular injury. These mechanisms include tubular backleak, dysfunctional tubuloglomerular feedback, capillary rarefaction, atubular glomeruli, and the secretion of factors from damaged tubular epithelial cells. Clinical evidence further supports the association between even mild or recovered acute kidney injury and an increased risk of chronic kidney disease, including glomerular diseases. We also discuss potential therapeutic interventions aimed at mitigating acute tubular injury, thereby reducing the detrimental effects on glomerular function. By unraveling the complex interplay from tubular injury to glomerular dysfunction, we aim to provide insights that can enhance clinical management strategies and improve outcomes for patients with kidney disease.


Asunto(s)
Lesión Renal Aguda , Glomérulos Renales , Túbulos Renales , Humanos , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Túbulos Renales/patología , Animales
7.
Clin J Am Soc Nephrol ; 19(4): 438-451, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261310

RESUMEN

BACKGROUND: Nephritis is a common manifestation of IgA vasculitis and is morphologically indistinguishable from IgA nephropathy. While MEST-C scores are predictive of kidney outcomes in IgA nephropathy, their value in IgA vasculitis nephritis has not been investigated in large multiethnic cohorts. METHODS: Biopsies from 262 children and 99 adults with IgA vasculitis nephritis ( N =361) from 23 centers in North America, Europe, and Asia were independently scored by three pathologists. MEST-C scores were assessed for correlation with eGFR/proteinuria at biopsy. Because most patients ( N =309, 86%) received immunosuppression, risk factors for outcomes were evaluated in this group using latent class mixed models to identify classes of eGFR trajectories over a median follow-up of 2.7 years (interquartile range, 1.2-5.1). Clinical and histologic parameters associated with each class were determined using logistic regression. RESULTS: M, E, T, and C scores were correlated with either eGFR or proteinuria at biopsy. Two classes were identified by latent class mixed model, one with initial improvement in eGFR followed by a late decline (class 1, N =91) and another with stable eGFR (class 2, N =218). Class 1 was associated with a higher risk of an established kidney outcome (time to ≥30% decline in eGFR or kidney failure; hazard ratio, 5.84; 95% confidence interval, 2.37 to 14.4). Among MEST-C scores, only E1 was associated with class 1 by multivariable analysis. Other factors associated with class 1 were age 18 years and younger, male sex, lower eGFR at biopsy, and extrarenal noncutaneous disease. Fibrous crescents without active changes were associated with class 2. CONCLUSIONS: Kidney outcome in patients with biopsied IgA vasculitis nephritis treated with immunosuppression was determined by clinical risk factors and endocapillary hypercellularity (E1) and fibrous crescents, which are features that are not part of the International Study of Diseases of Children classification.


Asunto(s)
Glomerulonefritis por IGA , Vasculitis por IgA , Nefritis , Adulto , Niño , Humanos , Masculino , Adolescente , Glomerulonefritis por IGA/complicaciones , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/patología , Vasculitis por IgA/complicaciones , Vasculitis por IgA/tratamiento farmacológico , Vasculitis por IgA/patología , Tasa de Filtración Glomerular , Riñón/patología , Nefritis/complicaciones , Proteinuria/etiología , Biopsia , Estudios Retrospectivos
8.
JAMA ; 331(6): 471-472, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38241042

RESUMEN

This Viewpoint discusses the potential drawbacks of the use of artificial intelligence (AI) in medicine, for example, the loss of certain skills due to the reliance on AI, and how physicians should consider how to take advantage of the potential benefits of AI without losing control over their profession.

9.
Am J Transplant ; 24(3): 350-361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37931753

RESUMEN

The XVIth Banff Meeting for Allograft Pathology was held in Banff, Alberta, Canada, from September 19 to 23, 2022, as a joint meeting with the Canadian Society of Transplantation. In addition to a key focus on the impact of microvascular inflammation and biopsy-based transcript analysis on the Banff Classification, further sessions were devoted to other aspects of kidney transplant pathology, in particular T cell-mediated rejection, activity and chronicity indices, digital pathology, xenotransplantation, clinical trials, and surrogate endpoints. Although the output of these sessions has not led to any changes in the classification, the key role of Banff Working Groups in phrasing unanswered questions, and coordinating and disseminating results of investigations addressing these unanswered questions was emphasized. This paper summarizes the key Banff Meeting 2022 sessions not covered in the Banff Kidney Meeting 2022 Report paper and also provides an update on other Banff Working Group activities relevant to kidney allografts.


Asunto(s)
Trasplante de Riñón , Canadá , Rechazo de Injerto/etiología , Rechazo de Injerto/patología , Riñón/patología , Aloinjertos
10.
Am J Transplant ; 24(3): 338-349, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38032300

RESUMEN

The XVI-th Banff Meeting for Allograft Pathology was held at Banff, Alberta, Canada, from 19th to 23rd September 2022, as a joint meeting with the Canadian Society of Transplantation. To mark the 30th anniversary of the first Banff Classification, premeeting discussions were held on the past, present, and future of the Banff Classification. This report is a summary of the meeting highlights that were most important in terms of their effect on the Classification, including discussions around microvascular inflammation and biopsy-based transcript analysis for diagnosis. In a postmeeting survey, agreement was reached on the delineation of the following phenotypes: (1) "Probable antibody-mediated rejection (AMR)," which represents donor-specific antibodies (DSA)-positive cases with some histologic features of AMR but below current thresholds for a definitive AMR diagnosis; and (2) "Microvascular inflammation, DSA-negative and C4d-negative," a phenotype of unclear cause requiring further study, which represents cases with microvascular inflammation not explained by DSA. Although biopsy-based transcript diagnostics are considered promising and remain an integral part of the Banff Classification (limited to diagnosis of AMR), further work needs to be done to agree on the exact classifiers, thresholds, and clinical context of use.


Asunto(s)
Trasplante de Riñón , Humanos , Complemento C4b , Canadá , Riñón/patología , Inflamación/patología , Isoanticuerpos , Biopsia
11.
Lab Invest ; 104(2): 100305, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38109999

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores de la Dipeptidil-Peptidasa IV , Hiperglucemia , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Albuminuria/tratamiento farmacológico , Albuminuria/complicaciones , Riñón , Hipoglucemiantes/farmacología , Ratones Endogámicos , Colágeno , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/farmacología , Dipeptidil Peptidasa 4
13.
Sci Adv ; 9(48): eadg8118, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38039359

RESUMEN

Syncytiotrophoblast stress is theorized to drive development of preeclampsia, but its molecular causes and consequences remain largely undefined. Multiple hormones implicated in preeclampsia signal via the Gαq cascade, leading to the hypothesis that excess Gαq signaling within the syncytiotrophoblast may contribute. First, we present data supporting increased Gαq signaling and antioxidant responses within villous and syncytiotrophoblast samples of human preeclamptic placenta. Second, Gαq was activated in mouse placenta using Cre-lox and DREADD methodologies. Syncytiotrophoblast-restricted Gαq activation caused hypertension, kidney damage, proteinuria, elevated circulating proinflammatory factors, decreased placental vascularization, diminished spiral artery diameter, and augmented responses to mitochondrial-derived superoxide. Administration of the mitochondrial-targeted antioxidant Mitoquinone attenuated maternal proteinuria, lowered circulating inflammatory and anti-angiogenic mediators, and maintained placental vascularization. These data demonstrate a causal relationship between syncytiotrophoblast stress and the development of preeclampsia and identify elevated Gαq signaling and mitochondrial reactive oxygen species as a cause of this stress.


Asunto(s)
Preeclampsia , Animales , Ratones , Embarazo , Femenino , Humanos , Trofoblastos , Placenta , Antioxidantes/farmacología , Proteínas de Unión al GTP , Proteinuria
14.
J Biol Chem ; 299(12): 105459, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977222

RESUMEN

The collagen IVα345 (Col-IVα345) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IVα345 scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure. How these variants cause proteinuria remains an enigma. In a companion paper, we found that the evolutionary emergence of the COL4A3, COL4A4, COL4A5, and COL4A6 genes coincided with kidney emergence in hagfish and shark and that the COL4A3 and COL4A4 were lost in amphibians. These findings opened an experimental window to gain insights into functionality of the Col-IVα345 scaffold. Here, using tissue staining, biochemical analysis and TEM, we characterized the scaffold chain arrangements and the morphology of the GBM of hagfish, shark, frog, and salamander. We found that α4 and α5 chains in shark GBM and α1 and α5 chains in amphibian GBM are spatially separated. Scaffolds are distinct from one another and from the mammalian Col-IVα345 scaffold, and the GBM morphologies are distinct. Our findings revealed that the evolutionary emergence of the Col-IVα345 scaffold enabled the genesis of a compact GBM that functions as an ultrafilter. Findings shed light on the conundrum, defined decades ago, whether the GBM or slit diaphragm is the primary filter.


Asunto(s)
Colágeno Tipo IV , Membrana Basal Glomerular , Mamíferos , Animales , Anuros , Colágeno Tipo IV/clasificación , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/química , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/fisiología , Anguila Babosa , Mamíferos/genética , Mamíferos/metabolismo , Mamíferos/fisiología , Tiburones , Especificidad de la Especie , Urodelos
15.
Glomerular Dis ; 3(1): 248-257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021464

RESUMEN

Introduction: Cure Glomerulonephropathy (CureGN) is an observational cohort study of patients with minimal change disease (MCD), focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MN), or IgA nephropathy. We developed a conventional, consensus-based scoring system to document pathologic features for application across multiple pathologists and herein describe the protocol, reproducibility, and correlation with clinical parameters at biopsy. Methods: Definitions were established for glomerular, tubular, interstitial, and vascular lesions evaluated semiquantitatively using digitized light microscopy slides and electron micrographs, and reported immunofluorescence. Cases with curated pathology materials as of April 2019 were scored by a randomly assigned pathologist, with at least 10% of cases scored by a second pathologist. Scoring reproducibility was assessed using Gwet's agreement coefficient (AC)1 statistic and correlations with clinical variables were performed. Results: Of 800 scored biopsies (134 MCD, 194 FSGS, 206 MN, 266 IgA), 94 were scored twice (11.8%). Of 60 pathology features, 46 (76.7%) demonstrated excellent (AC1>0.8), and 12 (20.0%) had good (AC1 0.6-0.8) reproducibility. Mesangial hypercellularity scored as absent, focal, or diffuse had moderate reproducibility (AC1 = 0.58), but good reproducibility (AC1 = 0.71) when scored as absent or focal versus diffuse. The percent glomeruli scored as no lesions had fair reproducibility (AC1 = 0.34). Strongest correlations between pathologic features and clinical characteristics at biopsy included interstitial inflammation, interstitial fibrosis, and tubular atrophy with estimated glomerular filtration rate, foot process effacement with urine protein/creatinine ratio, and active crescents with hematuria. Conclusions: Most scored pathology features showed excellent reproducibility, demonstrating consistency for these features across multiple pathologists. Correlations between certain pathologic features and expected clinical characteristics show the value of this approach for future studies on clinicopathologic correlations and biomarker discovery.

17.
Kidney Int ; 104(6): 1050-1053, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37336291
18.
Kidney Res Clin Pract ; 42(2): 166-173, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37037479

RESUMEN

The National Institutes of Health (NIH) lupus nephritis activity and chronicity indices, which comprise six activity scores and four chronicity scores, have a long development history. The 2018 revised International Society of Nephrology/Renal Pathology Society classification for lupus nephritis adopted the most recent NIH indices to replace subclasses A, C, and A/C. Although an evidence-based approach should further evaluate the clinical significance of the modified NIH indices, recent validation studies demonstrated that the modified chronicity indices have a strong correlation with kidney outcome of lupus nephritis.

19.
IEEE Trans Biomed Eng ; 70(9): 2636-2644, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37030838

RESUMEN

Comprehensive semantic segmentation on renal pathological images is challenging due to the heterogeneous scales of the objects. For example, on a whole slide image (WSI), the cross-sectional areas of glomeruli can be 64 times larger than that of the peritubular capillaries, making it impractical to segment both objects on the same patch, at the same scale. To handle this scaling issue, prior studies have typically trained multiple segmentation networks in order to match the optimal pixel resolution of heterogeneous tissue types. This multi-network solution is resource-intensive and fails to model the spatial relationship between tissue types. In this article, we propose the Omni-Seg network, a scale-aware dynamic neural network that achieves multi-object (six tissue types) and multi-scale (5× to 40× scale) pathological image segmentation via a single neural network. The contribution of this article is three-fold: (1) a novel scale-aware controller is proposed to generalize the dynamic neural network from single-scale to multi-scale; (2) semi-supervised consistency regularization of pseudo-labels is introduced to model the inter-scale correlation of unannotated tissue types into a single end-to-end learning paradigm; and (3) superior scale-aware generalization is evidenced by directly applying a model trained on human kidney images to mouse kidney images, without retraining. By learning from 150,000 human pathological image patches from six tissue types at three different resolutions, our approach achieved superior segmentation performance according to human visual assessment and evaluation of image-omics (i.e., spatial transcriptomics).


Asunto(s)
Riñón , Redes Neurales de la Computación , Humanos , Animales , Ratones , Riñón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador
20.
Circ Res ; 132(9): 1226-1245, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104557

RESUMEN

Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.


Asunto(s)
Enfermedades Renales , Vasos Linfáticos , Humanos , Intestinos , Sistema Linfático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...