Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37163117

RESUMEN

The abnormal assembly of tau protein in neurons is the pathological hallmark of multiple neurodegenerative diseases, including Alzheimer's disease (AD). In addition, assembled tau associates with extracellular vesicles (EVs) in the central nervous system of patients with AD, which is linked to its clearance and prion-like propagation between neurons. However, the identities of the assembled tau species and the EVs, as well as how they associate, are not known. Here, we combined quantitative mass spectrometry, cryo-electron tomography and single-particle cryo-electron microscopy to study brain EVs from AD patients. We found filaments of truncated tau enclosed within EVs enriched in endo-lysosomal proteins. We observed multiple filament interactions, including with molecules that tethered filaments to the EV limiting membrane, suggesting selective packaging. Our findings will guide studies into the molecular mechanisms of EV-mediated secretion of assembled tau and inform the targeting of EV-associated tau as potential therapeutic and biomarker strategies for AD.

2.
Eur J Cancer ; 44(4): 609-18, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18243687

RESUMEN

Trabectedin (ET-743, Yondelis) is a natural marine compound with antitumour activity currently undergoing phase II/III clinical trials. The mechanism of the drug's action is still to be defined, even though it has been clearly demonstrated the key role of Nucleotide Excision Repair (NER). To get further insights into the drug's mode of action, we studied the involvement of the DNA-double strand break repair (DNA-DSB) pathways: homologous and non-homologous recombination, both in budding yeasts and in mammalian cells and the possible cross-talk between NER and these repair pathways. Budding yeasts and mammalian cells deficient in the non-homologous end-joining pathway were moderately sensitive to trabectedin, while systems deficient in the homologous recombination pathway were extremely sensitive to the drug, with a 100-fold decrease in the IC50, suggesting that trabectedin-induced lesions are repaired by this pathway. The induction of Rad51 foci and the appearance of gamma-H2AX were chosen as putative markers for DNA-DSBs and were studied at different time points after trabectedin treatment in NER proficient and deficient systems. Both were clearly detected only in the presence of an active NER, suggesting that the DSBs are not directly caused by the drug, but are formed during the processing/repair of the drug- induced lesions.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Dioxoles/farmacología , Tetrahidroisoquinolinas/farmacología , Animales , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Células CHO , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cisplatino/farmacología , Cricetinae , Cricetulus , Reparación del ADN/genética , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Citometría de Flujo , Histonas/efectos de los fármacos , Histonas/metabolismo , Humanos , Inmunohistoquímica , Metilmetanosulfonato/farmacología , Mutación , Fosforilación , Saccharomyces cerevisiae/genética , Trabectedina
3.
Nature ; 412(6846): 557-61, 2001 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-11484058

RESUMEN

In response to DNA damage and blocks to replication, eukaryotes activate the checkpoint pathways that prevent genomic instability and cancer by coordinating cell cycle progression with DNA repair. In budding yeast, the checkpoint response requires the Mec1-dependent activation of the Rad53 protein kinase. Active Rad53 slows DNA synthesis when DNA is damaged and prevents firing of late origins of replication. Further, rad53 mutants are unable to recover from a replication block. Mec1 and Rad53 also modulate the phosphorylation state of different DNA replication and repair enzymes. Little is known of the mechanisms by which checkpoint pathways interact with the replication apparatus when DNA is damaged or replication blocked. We used the two-dimensional gel technique to examine replication intermediates in response to hydroxyurea-induced replication blocks. Here we show that hydroxyurea-treated rad53 mutants accumulate unusual DNA structures at replication forks. The persistence of these abnormal molecules during recovery from the hydroxyurea block correlates with the inability to dephosphorylate Rad53. Further, Rad53 is required to properly maintain stable replication forks during the block. We propose that Rad53 prevents collapse of the fork when replication pauses.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae , Ciclo Celular/genética , Ciclo Celular/fisiología , Quinasa de Punto de Control 2 , ADN de Hongos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hidroxiurea/farmacología , Mutación , Conformación de Ácido Nucleico , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Origen de Réplica , Ribonucleótido Reductasas/antagonistas & inhibidores , Saccharomycetales
4.
Curr Biol ; 11(13): 1053-7, 2001 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-11470411

RESUMEN

Saccharomyces cells with a single unrepaired double-strand break (DSB) will adapt to checkpoint-mediated G2/M arrest and resume cell cycle progression. The decision to adapt is finely regulated by the extent of single-stranded DNA generated from a DSB. We show that cells lacking the recombination protein Tid1p are unable to adapt, but that this defect is distinct from any role in recombination. As with the adaptation-defective mutations yku70Delta and cdc5-ad, permanent arrest in tid1Delta is bypassed by the deletion of the checkpoint gene RAD9. Permanent arrest of tid1Delta cells is suppressed by the rfa1-t11 mutation in the ssDNA binding complex RPA, similar to yku70Delta, whereas the defect in cdc5-ad is not suppressed. Unlike yku70Delta, tid1Delta does not affect 5'-to-3' degradation of DSB ends. The tid1Delta defect cannot be complemented by overexpressing the homolog Rad54p, nor is it affected in rad51Delta tid1Delta, rad54Delta tid1Delta, or rad52Delta tid1Delta double mutants that prevent essentially all homologous recombination. We suggest that Tid1p participates in monitoring the extent of single-stranded DNA produced by resection of DNA ends in a fashion that is distinct from its role in recombination.


Asunto(s)
Adaptación Fisiológica , Antígenos Nucleares , Daño del ADN , ADN Helicasas , Proteínas Fúngicas/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Enzimas Reparadoras del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Fase G2 , Eliminación de Gen , Cinética , Autoantígeno Ku , Mitosis , Proteínas Nucleares/genética , Saccharomyces cerevisiae/citología
5.
Int J Cancer ; 92(4): 583-8, 2001 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-11304695

RESUMEN

The cytotoxic activity of ecteinascidin 743 (ET-743), a natural product derived from the marine tunicate Ecteinascidia turbinata that exhibits potent anti-tumor activity in pre-clinical systems and promising activity in phase I and II clinical trials, was investigated in a number of cell systems with well-defined deficiencies in DNA-repair mechanisms. ET-743 binds to N2 of guanine in the minor groove, but its activity does not appear to be related to DNA-topoisomerase I poisoning as the drug is equally active in wild-type yeast and in yeast with a deletion in the DNA-topoisomerase I gene. Defects in the mismatch repair pathway, usually associated with increased resistance to methylating agents and cisplatin, did not affect the cytotoxic activity of ET-743. However, ET-743 did show decreased activity (from 2- to 8-fold) in nucleotide excision repair (NER)-deficient cell lines compared to NER-proficient cell lines, from either hamsters or humans. Restoration of NER function sensitized cells to ET-743 treatment. The DNA double-strand-break repair pathway was also investigated using human glioblastoma cell lines MO59K and MO59J, respectively, proficient and deficient in DNA-dependent protein kinase (DNA-PK). ET-743 was more effective in cells lacking DNA-PK; moreover, pre-treatment of HCT-116 colon carcinoma cells with wortmannin, a potent inhibitor of DNA-PK, sensitized cells to ET-743. An increase in ET-743 sensitivity was also observed in ataxia telangiectasia-mutated cells. Our data strongly suggest that ET-743 has a unique mechanism of interaction with DNA.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Reparación del ADN , Proteínas de Unión al ADN , Dioxoles/farmacología , Isoquinolinas/farmacología , Androstadienos/farmacología , Animales , Western Blotting , Células CHO , Camptotecina/farmacología , Supervivencia Celular , Cricetinae , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteína Quinasa Activada por ADN , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Proteínas Nucleares , Proteínas Serina-Treonina Quinasas/metabolismo , Tetrahidroisoquinolinas , Trabectedina , Células Tumorales Cultivadas , Wortmanina
6.
Mol Cell ; 7(2): 293-300, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11239458

RESUMEN

Saccharomyces cells with one unrepaired double-strand break (DSB) adapt after checkpoint-mediated G2/M arrest. Adaptation is accompanied by loss of Rad53p checkpoint kinase activity and Chk1p phosphorylation. Rad53p kinase remains elevated in yku70delta and cdc5-ad cells that fail to adapt. Permanent G2/M arrest in cells with increased single-stranded DNA is suppressed by the rfa1-t11 mutation, but this RPA mutation does not suppress permanent arrest in cdc5-ad cells. Checkpoint kinase activation and inactivation can be followed in G2-arrested cells, but there is no kinase activation in G1-arrested cells. We conclude that activation of the checkpoint kinases in response to a single DNA break is cell cycle regulated and that adaptation is an active process by which these kinases are inactivated.


Asunto(s)
Adaptación Biológica/genética , Antígenos Nucleares , Ciclo Celular , Daño del ADN/genética , ADN Helicasas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Anafase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Proteínas Fúngicas/metabolismo , Fase G2 , Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Cinética , Autoantígeno Ku , Mitosis , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas de Unión al ARN , Recombinación Genética , Proteína de Replicación A , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico
7.
EMBO J ; 19(18): 5027-38, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10990466

RESUMEN

In Saccharomyces cerevisiae the rate of DNA replication is slowed down in response to DNA damage as a result of checkpoint activation, which is mediated by the Mec1 and Rad53 protein kinases. We found that the Srs2 DNA helicase, which is involved in DNA repair and recombination, is phosphorylated in response to intra-S DNA damage in a checkpoint-dependent manner. DNA damage-induced Srs2 phosphorylation also requires the activity of the cyclin-dependent kinase Cdk1, suggesting that the checkpoint pathway might modulate Cdk1 activity in response to DNA damage. Moreover, srs2 mutants fail to activate Rad53 properly and to slow down DNA replication in response to intra-S DNA damage. The residual Rad53 activity observed in srs2 cells depends upon the checkpoint proteins Rad17 and Rad24. Moreover, DNA damage-induced lethality in rad17 mutants depends partially upon Srs2, suggesting that a functional Srs2 helicase causes accumulation of lethal events in a checkpoint-defective context. Altogether, our data implicate Srs2 in the Mec1 and Rad53 pathway and connect the checkpoint response to DNA repair and recombination.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , ADN Helicasas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Western Blotting , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/metabolismo , Separación Celular , Quinasa de Punto de Control 2 , Daño del ADN , ADN Helicasas/genética , Reparación del ADN , Proteínas de Unión al ADN , Citometría de Flujo , Proteínas Fúngicas/genética , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Metilmetanosulfonato/farmacología , Modelos Genéticos , Mutagénesis Sitio-Dirigida , Proteínas Nucleares , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Plásmidos/genética , Plásmidos/metabolismo , Pruebas de Precipitina , Proteínas Quinasas/metabolismo , Recombinación Genética , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Factores de Tiempo
8.
Mutat Res ; 451(1-2): 187-96, 2000 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-10915872

RESUMEN

In response to genotoxic agents and cell cycle blocks all eukaryotic cells activate a set of surveillance mechanims called checkpoints. A subset of these mechanisms is represented by the DNA damage checkpoint, which is triggered by DNA lesions. The activation of this signal transduction pathway leads to a delay of cell cycle progression to prevent replication and segregation of damaged DNA molecules, and to induce transcription of several DNA repair genes. The yeast Saccharomyces cerevisiae has been invaluable in genetically dissecting the DNA damage checkpoint pathway and recent findings have provided new insights into the architecture of checkpoint protein complexes, in their order of function and in the mechanisms controlling DNA replication in response to DNA damage.


Asunto(s)
Ciclo Celular/genética , Daño del ADN/fisiología , Replicación del ADN , Saccharomyces cerevisiae/genética , Transducción de Señal , Transcripción Genética
10.
EMBO J ; 18(22): 6561-72, 1999 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-10562568

RESUMEN

The Saccharomyces cerevisiae Rad53 protein kinase is required for the execution of checkpoint arrest at multiple stages of the cell cycle. We found that Rad53 autophosphorylation activity depends on in trans phosphorylation mediated by Mec1 and does not require physical association with other proteins. Uncoupling in trans phosphorylation from autophosphorylation using a rad53 kinase-defective mutant results in a dominant-negative checkpoint defect. Activation of Rad53 in response to DNA damage in G(1) requires the Rad9, Mec3, Ddc1, Rad17 and Rad24 checkpoint factors, while this dependence is greatly reduced in S phase cells. Furthermore, during recovery from checkpoint activation, Rad53 activity decreases through a process that does not require protein synthesis. We also found that Rad53 modulates the lagging strand replication apparatus by controlling phosphorylation of the DNA polymerase alpha-primase complex in response to intra-S DNA damage.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ciclo Celular , Quinasa de Punto de Control 2 , Activación Enzimática , Proteínas Fúngicas/metabolismo , Fase G1 , Genotipo , Modelos Genéticos , Mutagénesis , Fosforilación , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología
11.
EMBO J ; 17(19): 5525-8, 1998 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-9755152

RESUMEN

Eukaryotic cells have evolved a network of control mechanisms, known as checkpoints, which coordinate cell-cycle progression in response to internal and external cues. The yeast Saccharomyces cerevisiae has been invaluable in dissecting genetically the DNA damage checkpoint pathway. Recent results on posttranslational modifications and protein-protein interactions of some key factors provide new insights into the architecture of checkpoint protein complexes and their order of function.


Asunto(s)
Daño del ADN , Replicación del ADN , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Evolución Molecular , Genes Fúngicos , Modelos Genéticos
12.
Biol Chem ; 379(8-9): 1019-23, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9792433

RESUMEN

Eukaryotic cells must be able to coordinate DNA repair, replication and cell cycle progression in response to DNA damage. A failure to activate the checkpoints which delay the cell cycle in response to internal and external cues and to repair the DNA lesions results in an increase in genetic instability and cancer predisposition. The use of the yeast Saccharomyces cerevisiae has been invaluable in isolating many of the genes required for the DNA damage response, although the molecular mechanisms which couple this regulatory pathway to different DNA transactions are still largely unknown. In analogy with prokaryotes, we propose that DNA strand breaks, caused by genotoxic agents or by replication-related lesions, trigger a replication coupled repair mechanism, dependent upon recombination, which is induced by the checkpoint acting during S-phase.


Asunto(s)
Daño del ADN , Fase S , Schizosaccharomyces/genética , Schizosaccharomyces/citología
13.
EMBO J ; 17(14): 4139-46, 1998 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9670028

RESUMEN

Eukaryotic DNA replication is limited to once per cell cycle because cyclin-dependent kinases (cdks), which are required to fire origins, also prevent re-replication. Components of the replication apparatus, therefore, are 'reset' by cdk inactivation at the end of mitosis. In budding yeast, assembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) at origins can only occur during G1 because it is blocked by cdk1 (Cdc28) together with B cyclins (Clbs). Here we describe a second, separate process which is also blocked by Cdc28/Clb kinase and, therefore, can only occur during G1; the recruitment of DNA polymerase alpha-primase (pol alpha) to chromatin. The recruitment of pol alpha to chromatin during G1 is independent of pre-RC formation since it can occur in the absence of Cdc6 protein. Paradoxically, overproduction of Cdc6p can drive both dephosphorylation and chromatin association of pol alpha. Overproduction of a mutant in which the N-terminus of Cdc6 has been deleted is unable to drive pol alpha chromatin binding. Since this mutant is still competent for pre-RC formation and DNA replication, we suggest that Cdc6p overproduction resets pol alpha chromatin binding by a mechanism which is independent of that used in pre-RC assembly.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/fisiología , ADN Polimerasa I/metabolismo , Replicación del ADN/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina , ADN Primasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Fase G1/fisiología , Fosforilación , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética
14.
Trends Biochem Sci ; 22(11): 424-7, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9397683

RESUMEN

The highly conserved DNA polymerase alpha-primase complex (pol-prism) is the only eukaryotic DNA polymerase that can initiate DNA synthesis de novo. It is required both for the initiation of DNA replication at chromosomal origins and for the discontinuous synthesis of Okazaki fragments on the lagging strand of the replication fork. The dual role of pol-prim makes it a likely target for mechanisms that control cell-cycle S-phase entry and progression.


Asunto(s)
Ciclo Celular , Daño del ADN , ADN Primasa/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , Humanos
15.
EMBO J ; 16(3): 639-50, 1997 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-9034345

RESUMEN

The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN/genética , Replicación del ADN/genética , Proteínas Serina-Treonina Quinasas , ARN Nucleotidiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Western Blotting , Ciclo Celular/genética , Quinasa de Punto de Control 2 , ADN/biosíntesis , ADN Primasa , Estabilidad de Enzimas/genética , Citometría de Flujo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Interfase/genética , Metilmetanosulfonato/farmacología , Mitosis/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida/genética , Mutágenos/farmacología , Mutación/genética , Fosforilación , Proteínas Quinasas , ARN Nucleotidiltransferasas/genética , Fase S/genética , Saccharomyces cerevisiae/genética , Temperatura , Rayos Ultravioleta/efectos adversos
16.
Mol Gen Genet ; 253(3): 278-88, 1996 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-9003314

RESUMEN

In this report we study the regulation of premeiotic DNA synthesis in Saccharomyces cerevisiae. DNA replication was monitored by fluorescence-activated cell sorting analysis and by analyzing the pattern of expression of the DNA polymerase alpha-primase complex. Wild-type cells and cells lacking one of the two principal regulators of meiosis, Ime1 and Ime2, were compared. We show that premeiotic DNA synthesis does not occur in ime1 delta diploids, but does occur in ime2 delta diploids with an 8-9 h delay. At late meiotic times, ime2 delta diploids exhibit an additional round of DNA synthesis. Furthermore, we show that in wild-type cells the B-subunit of DNA polymerase alpha is phosphorylated during premeiotic DNA synthesis, a phenomenon that has previously been reported for the mitotic cell cycle. Moreover, the catalytic subunit and the B-subunit of DNA polymerase alpha are specifically degraded during spore formation. Phosphorylation of the B-subunit does not occur in ime1 delta diploids, but does occur in ime2 delta diploids with an 8-9 h delay. In addition, we show that Ime2 is not absolutely required for commitment to meiotic recombination, spindle formation and nuclear division, although it is required for spore formation.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN/fisiología , Proteínas Fúngicas/fisiología , Meiosis/fisiología , Proteínas Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Núcleo Celular/fisiología , ADN Primasa , ADN de Hongos/biosíntesis , Diploidia , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Fúngicas/genética , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , ARN Nucleotidiltransferasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/genética , Huso Acromático/fisiología , Esporas Fúngicas/fisiología , Factores de Tiempo
17.
J Biol Chem ; 271(15): 8661-6, 1996 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-8621497

RESUMEN

The B subunit of the DNA polymerase (pol) alpha-primase complex executes an essential role at the initial stage of DNA replication in Saccharomyces cerevisiae and is phosphorylated in a cell cycle-dependent manner. In this report, we show that the four subunits of the yeast DNA polymerase alpha-primase complex are assembled throughout the cell cycle, and physical association between newly synthesized pol alpha (p180) and unphosphorylated B subunit (p86) occurs very rapidly. Therefore, B subunit phosphorylation does not appear to modulate p180.p86 interaction. Conversely, by depletion experiments and by using a yeast mutant strain, which produces a low and constitutive level of the p180 polypeptide, we found that formation of the p180.p86 subcomplex is required for B subunit phosphorylation.


Asunto(s)
ADN Polimerasa II/metabolismo , Replicación del ADN , ARN Nucleotidiltransferasas/metabolismo , Ciclo Celular , ADN Primasa , Sustancias Macromoleculares , Peso Molecular , Fosforilación , Unión Proteica , Saccharomyces cerevisiae/enzimología
18.
Genes Dev ; 10(4): 395-406, 1996 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-8600024

RESUMEN

SPK1/RAD53/MEC2/SAD1 of Saccharomyces cerevisiae encodes an essential protein kinase that is required for activation of replication-sensitive and DNA damage-sensitive checkpoint arrest. We have investigated the regulation of phosphorylation and kinase activity of Spk1p during the cell cycle and by conditions that activate checkpoint pathways. Phosphorylation of Spk1p is induced by treatment of cells with agents that damage DNA or interfere with DNA synthesis. Although only S- and G2-phase cdc mutants arrest with hyperphosphorylated Spk1p, damage-induced phosphorylation of Spk1p can occur in G1 and M as well. Hydroxyurea (HU) induces phosphorylation of kinase-defective forms of Spk1p, demonstrating that this regulated phosphorylation of Spk1p occurs in trans. HU-induced phosphorylation is associated with increased catalytic activity of Spk1p. Furthermore, overexpression of wild-type SPK1, but not checkpoint-defective alleles, delays progression through the G1/S boundary. Damage-dependent phosphorylation of Spk1p requires both MEC1 and MEC3, whereas MEC1 but not MEC3, is required for replication block-induced phosphorylation. These data support the model that Spk1p is an essential intermediate component in a signal transduction pathway coupling damage and checkpoint functions to cell cycle arrest. This regulation is mediated through a protein kinase cascade that potentially includes Mec1p and Tel1p as the upstream kinases.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Replicación del ADN , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fosfatasa Alcalina/metabolismo , Ciclo Celular , División Celular , Quinasa de Punto de Control 2 , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Hidroxiurea/farmacología , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular , Metilmetanosulfonato/farmacología , Mutagénesis/genética , Fosforilación , Pruebas de Precipitina , Saccharomyces cerevisiae/citología , Transducción de Señal , Temperatura
19.
Mol Cell Biol ; 15(2): 883-91, 1995 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-7823954

RESUMEN

The yeast DNA polymerase alpha-primase B subunit functions in initiation of DNA replication. This protein is present in two forms, of 86 and 91 kDa, and the p91 polypeptide results from cell cycle-regulated phosphorylation of p86. The B subunit present in G1 arises by dephosphorylation of p91 while cells are exiting from mitosis, becomes phosphorylated in early S phase, and is competent and sufficient to initiate DNA replication. The B subunit transiently synthesized as a consequence of periodic transcription of the POL12 gene is phosphorylated no earlier than G2. Phosphorylation of the B subunit does not require execution of the CDC7-dependent step and ongoing DNA synthesis. We suggest that posttranslational modifications of the B subunit might modulate the role of DNA polymerase alpha-primase in DNA replication.


Asunto(s)
Ciclo Celular/fisiología , ARN Nucleotidiltransferasas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Fosfatasa Ácida , Western Blotting , ADN Primasa , Replicación del ADN , Fase G1 , Expresión Génica , Genotipo , Cinética , Sustancias Macromoleculares , Mutagénesis , Fosforilación , Plásmidos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Solanum tuberosum/enzimología , Factores de Tiempo
20.
Mol Cell Biol ; 14(2): 923-33, 1994 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8289832

RESUMEN

The four-subunit DNA polymerase alpha-primase complex is unique in its ability to synthesize DNA chains de novo, and some in vitro data suggest its involvement in initiation and elongation of chromosomal DNA replication, although direct in vivo evidence for a role in the initiation reaction is still lacking. The function of the B subunit of the complex is unknown, but the Saccharomyces cerevisiae POL12 gene, which encodes this protein, is essential for cell viability. We have produced different pol12 alleles by in vitro mutagenesis of the cloned gene. The in vivo analysis of our 18 pol12 alleles indicates that the conserved carboxy-terminal two-thirds of the protein contains regions that are essential for cell viability, while the more divergent NH2-terminal portion is partially dispensable. The characterization of the temperature-sensitive pol12-T9 mutant allele demonstrates that the B subunit is required for in vivo DNA synthesis and correct progression through S phase. Moreover, reciprocal shift experiments indicate that the POL12 gene product plays an essential role at the early stage of chromosomal DNA replication, before the hydroxyurea-sensitive step. A model for the role of the B subunit in initiation of DNA replication at an origin is presented.


Asunto(s)
Replicación del ADN , Genes Fúngicos , ARN Nucleotidiltransferasas/metabolismo , Saccharomyces cerevisiae/enzimología , Alelos , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Western Blotting , Cromosomas Fúngicos/efectos de los fármacos , ADN Primasa , Homeostasis , Humanos , Hidroxiurea/farmacología , Cinética , Sustancias Macromoleculares , Ratones , Ratones Endogámicos BALB C/inmunología , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , ARN Nucleotidiltransferasas/análisis , ARN Nucleotidiltransferasas/biosíntesis , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA