Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37632015

RESUMEN

Antibiotic resistance poses a growing risk to public health, requiring new tools to combat pathogenic bacteria. Contractile injection systems, including bacteriophage tails, pyocins, and bacterial type VI secretion systems, can efficiently penetrate cell envelopes and become potential antibacterial agents. Bacteriophage XM1 is a dsDNA virus belonging to the Myoviridae family and infecting Vibrio bacteria. The XM1 virion, made of 18 different proteins, consists of an icosahedral head and a contractile tail, terminated with a baseplate. Here, we report cryo-EM reconstructions of all components of the XM1 virion and describe the atomic structures of 14 XM1 proteins. The XM1 baseplate is composed of a central hub surrounded by six wedge modules to which twelve spikes are attached. The XM1 tail contains a fewer number of smaller proteins compared to other reported phage baseplates, depicting the minimum requirements for building an effective cell-envelope-penetrating machine. We describe the tail sheath structure in the pre-infection and post-infection states and its conformational changes during infection. In addition, we report, for the first time, the in situ structure of the phage neck region to near-atomic resolution. Based on these structures, we propose mechanisms of virus assembly and infection.


Asunto(s)
Bacteriófagos , Myoviridae , Myoviridae/genética , Bacteriófagos/genética , Antibacterianos , Membrana Celular , ADN
2.
Viruses ; 15(7)2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37515203

RESUMEN

Bacteriophage T4 is decorated with 155 180 Å-long fibers of the highly antigenic outer capsid protein (Hoc). In this study, we describe a near-atomic structural model of Hoc by combining cryo-electron microscopy and AlphaFold structure predictions. It consists of a conserved C-terminal capsid-binding domain attached to a string of three variable immunoglobulin (Ig)-like domains, an architecture well-preserved in hundreds of Hoc molecules found in phage genomes. Each T4-Hoc fiber attaches randomly to the center of gp23* hexameric capsomers in one of the six possible orientations, though at the vertex-proximal hexamers that deviate from 6-fold symmetry, Hoc binds in two preferred orientations related by 180° rotation. Remarkably, each Hoc fiber binds to all six subunits of the capsomer, though the interactions are greatest with three of the subunits, resulting in the off-centered attachment of the C-domain. Biochemical analyses suggest that the acidic Hoc fiber (pI, ~4-5) allows for the clustering of virions in acidic pH and dispersion in neutral/alkaline pH. Hoc appears to have evolved as a sensing device that allows the phage to navigate its movements through reversible clustering-dispersion transitions so that it reaches its destination, the host bacterium, and persists in various ecological niches such as the human/mammalian gut.


Asunto(s)
Bacteriófagos , Animales , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , Proteínas de la Cápside/química , Cápside/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/química , Unión Proteica , Mamíferos
3.
Nat Commun ; 14(1): 2928, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253769

RESUMEN

Designing artificial viral vectors (AVVs) programmed with biomolecules that can enter human cells and carry out molecular repairs will have broad applications. Here, we describe an assembly-line approach to build AVVs by engineering the well-characterized structural components of bacteriophage T4. Starting with a 120 × 86 nm capsid shell that can accommodate 171-Kbp DNA and thousands of protein copies, various combinations of biomolecules, including DNAs, proteins, RNAs, and ribonucleoproteins, are externally and internally incorporated. The nanoparticles are then coated with cationic lipid to enable efficient entry into human cells. As proof of concept, we assemble a series of AVVs designed to deliver full-length dystrophin gene or perform various molecular operations to remodel human genome, including genome editing, gene recombination, gene replacement, gene expression, and gene silencing. These large capacity, customizable, multiplex, and all-in-one phage-based AVVs represent an additional category of nanomaterial that could potentially transform gene therapies and personalized medicine.


Asunto(s)
Bacteriófago T4 , Genoma Humano , Humanos , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Vectores Genéticos/genética , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , ADN Viral/genética
4.
Viruses ; 15(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36851741

RESUMEN

Bacteriophage (phage) T4 has served as an extraordinary model to elucidate biological structures and mechanisms. Recent discoveries on the T4 head (capsid) structure, portal vertex, and genome packaging add a significant body of new literature to phage biology. Head structures in unexpanded and expanded conformations show dramatic domain movements, structural remodeling, and a ~70% increase in inner volume while creating high-affinity binding sites for the outer decoration proteins Soc and Hoc. Small changes in intercapsomer interactions modulate angles between capsomer planes, leading to profound alterations in head length. The in situ cryo-EM structure of the symmetry-mismatched portal vertex shows the remarkable structural morphing of local regions of the portal protein, allowing similar interactions with the capsid protein in different structural environments. Conformational changes in these interactions trigger the structural remodeling of capsid protein subunits surrounding the portal vertex, which propagate as a wave of expansion throughout the capsid. A second symmetry mismatch is created when a pentameric packaging motor assembles at the outer "clip" domains of the dodecameric portal vertex. The single-molecule dynamics of the packaging machine suggests a continuous burst mechanism in which the motor subunits adjusted to the shape of the DNA fire ATP hydrolysis, generating speeds as high as 2000 bp/s.


Asunto(s)
Bacteriófago T4 , Cápside , Bacteriófago T4/genética , Sitios de Unión , Proteínas de la Cápside/genética , Cabeza
5.
Proc Natl Acad Sci U S A ; 119(40): e2203272119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161892

RESUMEN

Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers' periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume.


Asunto(s)
Bacteriófago T4 , Cápside , Virión , Bacteriófago T4/química , Bacteriófago T4/fisiología , Cápside/química , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Dominios Proteicos , Virión/química , Ensamble de Virus
6.
Curr Opin Virol ; 51: 65-73, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619513

RESUMEN

Many icosahedral viruses including tailed bacteriophages and herpes viruses have a unique portal vertex where a dodecameric protein ring is associated with a fivefold capsid shell. While the peripheral regions of the portal ring are involved in capsid assembly, its central channel is used to transport DNA into and out of capsid during genome packaging and infection. Though the atomic structure of this highly conserved, turbine-shaped, portal is known for nearly two decades, its molecular mechanism remains a mystery. Recent high-resolution in situ structures reveal various conformational states of the portal and the asymmetric interactions between the 12-fold portal and the fivefold capsid. These lead to a valve-like mechanism for this symmetry-mismatched portal vertex that regulates DNA flow through the channel, a critical function for high fidelity assembly of an infectious virion.


Asunto(s)
Cápside/química , Virión/química , Virión/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Virión/patogenicidad
7.
Nat Commun ; 11(1): 1713, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32249784

RESUMEN

Large biological structures are assembled from smaller, often symmetric, sub-structures. However, asymmetry among sub-structures is fundamentally important for biological function. An extreme form of asymmetry, a 12-fold-symmetric dodecameric portal complex inserted into a 5-fold-symmetric capsid vertex, is found in numerous icosahedral viruses, including tailed bacteriophages, herpesviruses, and archaeal viruses. This vertex is critical for driving capsid assembly, DNA packaging, tail attachment, and genome ejection. Here, we report the near-atomic in situ structure of the symmetry-mismatched portal vertex from bacteriophage T4. Remarkably, the local structure of portal morphs to compensate for symmetry-mismatch, forming similar interactions in different capsid environments while maintaining strict symmetry in the rest of the structure. This creates a unique and unusually dynamic symmetry-mismatched vertex that is central to building an infectious virion.


Asunto(s)
Bacteriófago T4/química , Proteínas de la Cápside/química , Cápside/química , Virión/química , Ensamble de Virus/genética , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Empaquetamiento del ADN , ADN Viral , Escherichia coli/química , Escherichia coli/virología , Modelos Moleculares , Mutación , Proteínas Virales/química , Proteínas Virales/genética , Virión/genética
8.
PLoS Pathog ; 15(12): e1008193, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31856258

RESUMEN

Tailed bacteriophages (phages) are one of the most abundant life forms on Earth. They encode highly efficient molecular machines to infect bacteria, but the initial interactions between a phage and a bacterium that then lead to irreversible virus attachment and infection are poorly understood. This information is critically needed to engineer machines with novel host specificities in order to combat antibiotic resistance, a major threat to global health today. The tailed phage T4 encodes a specialized device for this purpose, the long tail fiber (LTF), which allows the virus to move on the bacterial surface and find a suitable site for infection. Consequently, the infection efficiency of phage T4 is one of the highest, reaching the theoretical value of 1. Although the atomic structure of the tip of the LTF has been determined, its functional architecture and how interactions with two structurally very different Escherichia coli receptor molecules, lipopolysaccharide (LPS) and outer membrane protein C (OmpC), contribute to virus movement remained unknown. Here, by developing direct receptor binding assays, extensive mutational and biochemical analyses, and structural modeling, we discovered that the ball-shaped tip of the LTF, a trimer of gene product 37, consists of three sets of symmetrically alternating binding sites for LPS and/or OmpC. Our studies implicate reversible and dynamic interactions between these sites and the receptors. We speculate that the LTF might function as a "molecular pivot" allowing the virus to "walk" on the bacterium by adjusting the angle or position of interaction of the six LTFs attached to the six-fold symmetric baseplate.


Asunto(s)
Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Escherichia coli/virología , Acoplamiento Viral , Animales , Ratones , Porinas/metabolismo , Receptores Virales/metabolismo
9.
J Struct Biol ; 205(3): 53-58, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30742896

RESUMEN

The interpretation of cryo-electron tomograms of macromolecular complexes can be difficult because of the large amount of noise and because of the missing wedge effect. Here it is shown how the presence of rotational symmetry in a sample can be utilized to enhance the quality of a tomographic analysis. The orientation of symmetry axes in a sub-tomogram can be determined using a locked self-rotation function. Given this knowledge, the sub-tomogram density can then be averaged to improve its interpretability. Sub-tomograms of the icosahedral bacteriophage phiX174 are used to demonstrate the procedure.


Asunto(s)
Bacteriófago phi X 174/ultraestructura , Cápside/ultraestructura , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Rotación
10.
Structure ; 26(2): 238-248.e3, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29290487

RESUMEN

Marine bacteriophage TW1 belongs to the Siphoviridae family and infects Pseudoalteromonas phenolica. Mass spectrometry analysis has identified 16 different proteins in the TW1 virion. Functions of most of these proteins have been predicted by bioinformatic methods. A 3.6 Å resolution cryoelectron microscopy map of the icosahedrally averaged TW1 head showed the atomic structures of the major capsid protein, gp57∗, and the capsid-stabilizing protein, gp56. The gp57∗ structure is similar to that of the phage HK97 capsid protein. The gp56 protein has two domains, each having folds similar to that of the N-terminal part of phage λ gpD, indicating a common ancestry. The first gp56 domain clamps adjacent capsomers together, whereas the second domain is required for trimerization. A 6-fold-averaged reconstruction of the distal part of the tail showed that TW1 has six tail spikes, which are unusual for siphophages but are similar to the podophages P22 and Sf6, suggesting a common evolutionary origin of these spikes.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Siphoviridae/metabolismo , Bacteriófagos/metabolismo , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica , Ensamble de Virus
11.
Proc Natl Acad Sci U S A ; 114(39): E8184-E8193, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893988

RESUMEN

The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.


Asunto(s)
Bacteriófago T4/ultraestructura , Proteínas de la Cápside/química , Cápside/metabolismo , Ensamble de Virus/fisiología , Bacteriófago T4/genética , Proteínas de la Cápside/genética , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Modelos Moleculares , Mutación/genética , Estructura Secundaria de Proteína , Virión/química
12.
Nat Commun ; 8: 14722, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300075

RESUMEN

The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-Barré syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2 Å resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas Estructurales Virales/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteínas Estructurales Virales/química , Virus Zika/fisiología , Virus Zika/ultraestructura , Infección por el Virus Zika/virología
13.
Structure ; 24(11): 1928-1935, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27667692

RESUMEN

Many large viruses, including tailed dsDNA bacteriophages and herpesviruses, assemble their capsids via formation of precursors, called procapsids or proheads. The prohead has an internal core, made of scaffolding proteins, and an outer shell, formed by the major capsid protein. The prohead usually contains a protease, which is activated during capsid maturation to destroy the inner core and liberate space for the genome. Here, we report a 2.0 Å resolution structure of the pentameric procapsid protease of bacteriophage T4, gene product (gp)21. The structure corresponds to the enzyme's pre-active state in which its N-terminal region blocks the catalytic center, demonstrating that the activation mechanism involves self-cleavage of nine N-terminal residues. We describe similarities and differences between T4 gp21 and related herpesvirus proteases. We found that gp21 and the herpesvirus proteases have similarity with proteins forming the tubes of phage tails and bacterial type VI secretion systems, suggesting their common evolutionary origin.


Asunto(s)
Bacteriófago T4/enzimología , Endopeptidasas/química , Herpesviridae/enzimología , Secuencias de Aminoácidos , Cápside/química , Dominio Catalítico , Evolución Molecular , Modelos Moleculares , Pliegue de Proteína , Sistemas de Secreción Tipo VI/química , Proteínas Virales/química
14.
Proc Natl Acad Sci U S A ; 113(10): 2654-9, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26929357

RESUMEN

Bacteriophage T4 consists of a head for protecting its genome and a sheathed tail for inserting its genome into a host. The tail terminates with a multiprotein baseplate that changes its conformation from a "high-energy" dome-shaped to a "low-energy" star-shaped structure during infection. Although these two structures represent different minima in the total energy landscape of the baseplate assembly, as the dome-shaped structure readily changes to the star-shaped structure when the virus infects a host bacterium, the dome-shaped structure must have more energy than the star-shaped structure. Here we describe the electron microscopy structure of a 3.3-MDa in vitro-assembled star-shaped baseplate with a resolution of 3.8 Å. This structure, together with other genetic and structural data, shows why the high-energy baseplate is formed in the presence of the central hub and how the baseplate changes to the low-energy structure, via two steps during infection. Thus, the presence of the central hub is required to initiate the assembly of metastable, high-energy structures. If the high-energy structure is formed and stabilized faster than the low-energy structure, there will be insufficient components to assemble the low-energy structure.


Asunto(s)
Bacteriófago T4/ultraestructura , Microscopía por Crioelectrón/métodos , Virión/ultraestructura , Ensamble de Virus , Bacterias/virología , Bacteriófago T4/química , Bacteriófago T4/fisiología , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Grabación de Cinta de Video , Proteínas Virales/química , Proteínas Virales/ultraestructura , Virión/química , Virión/fisiología
15.
Proc Natl Acad Sci U S A ; 112(45): 13898-903, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26504196

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. Here, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain's ß-ribbon connector of the viral glycoprotein E2. The footprints of these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. This finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Fiebre Chikungunya/terapia , Virus Chikungunya/inmunología , Microscopía por Crioelectrón/métodos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/uso terapéutico , Humanos , Conformación Proteica
16.
Science ; 347(6217): 71-4, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25554786

RESUMEN

Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report here the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. We also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, be a possible drug candidate to alleviate EV-D68 outbreaks.


Asunto(s)
Antivirales/química , Cápside/química , Enterovirus Humano D/química , Infecciones por Enterovirus/virología , Oxadiazoles/química , Enfermedades Respiratorias/virología , Antivirales/farmacología , Antivirales/uso terapéutico , Cápside/efectos de los fármacos , Cápside/ultraestructura , Niño , Cristalografía por Rayos X , Enterovirus Humano D/efectos de los fármacos , Enterovirus Humano D/ultraestructura , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/epidemiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Oxadiazoles/farmacología , Oxadiazoles/uso terapéutico , Oxazoles , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/epidemiología , Estados Unidos/epidemiología , Proteínas Virales/química , Proteínas Virales/ultraestructura
17.
Bacteriophage ; 4(1): e28281, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24616838

RESUMEN

The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions.

18.
Nature ; 505(7483): 432-5, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24336205

RESUMEN

Prokaryotic viruses have evolved various mechanisms to transport their genomes across bacterial cell walls. Many bacteriophages use a tail to perform this function, whereas tail-less phages rely on host organelles. However, the tail-less, icosahedral, single-stranded DNA ΦX174-like coliphages do not fall into these well-defined infection processes. For these phages, DNA delivery requires a DNA pilot protein. Here we show that the ΦX174 pilot protein H oligomerizes to form a tube whose function is most probably to deliver the DNA genome across the host's periplasmic space to the cytoplasm. The 2.4 Å resolution crystal structure of the in vitro assembled H protein's central domain consists of a 170 Å-long α-helical barrel. The tube is constructed of ten α-helices with their amino termini arrayed in a right-handed super-helical coiled-coil and their carboxy termini arrayed in a left-handed super-helical coiled-coil. Genetic and biochemical studies demonstrate that the tube is essential for infectivity but does not affect in vivo virus assembly. Cryo-electron tomograms show that tubes span the periplasmic space and are present while the genome is being delivered into the host cell's cytoplasm. Both ends of the H protein contain transmembrane domains, which anchor the assembled tubes into the inner and outer cell membranes. The central channel of the H-protein tube is lined with amide and guanidinium side chains. This may be a general property of viral DNA conduits and is likely to be critical for efficient genome translocation into the host.


Asunto(s)
Bacteriófago phi X 174/química , Bacteriófago phi X 174/metabolismo , ADN Viral/metabolismo , Escherichia coli/virología , Ensamble de Virus , Bacteriófago phi X 174/ultraestructura , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Citoplasma/metabolismo , Citoplasma/ultraestructura , Citoplasma/virología , ADN Viral/ultraestructura , Escherichia coli/citología , Escherichia coli/ultraestructura , Genoma Viral , Modelos Moleculares , Periplasma/metabolismo , Periplasma/ultraestructura , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
19.
Proc Natl Acad Sci U S A ; 110(50): 20105-10, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24282305

RESUMEN

Rubella virus (RV) is a leading cause of birth defects due to infectious agents. When contracted during pregnancy, RV infection leads to severe damage in fetuses. Despite its medical importance, compared with the related alphaviruses, very little is known about the structure of RV. The RV capsid protein is an essential structural component of virions as well as a key factor in virus-host interactions. Here we describe three crystal structures of the structural domain of the RV capsid protein. The polypeptide fold of the RV capsid protomer has not been observed previously. Combining the atomic structure of the RV capsid protein with the cryoelectron tomograms of RV particles established a low-resolution structure of the virion. Mutational studies based on this structure confirmed the role of amino acid residues in the capsid that function in the assembly of infectious virions.


Asunto(s)
Proteínas de la Cápside/química , Modelos Moleculares , Conformación Proteica , Virus de la Rubéola/genética , Ensamble de Virus/fisiología , Animales , Proteínas de la Cápside/genética , Chlorocebus aethiops , Microscopía por Crioelectrón , Cristalografía por Rayos X , Análisis Mutacional de ADN , Oligonucleótidos/genética , Virus de la Rubéola/ultraestructura , Ensamble de Virus/genética
20.
J Mol Biol ; 425(10): 1731-44, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23434847

RESUMEN

A hexamer of the bacteriophage T4 tail terminator protein, gp15, attaches to the top of the phage tail stabilizing the contractile sheath and forming the interface for binding of the independently assembled head. Here we report the crystal structure of the gp15 hexamer, describe its interactions in T4 virions that have either an extended tail or a contracted tail, and discuss its structural relationship to other phage proteins. The neck of T4 virions is decorated by the "collar" and "whiskers", made of fibritin molecules. Fibritin acts as a chaperone helping to attach the long tail fibers to the virus during the assembly process. The collar and whiskers are environment-sensing devices, regulating the retraction of the long tail fibers under unfavorable conditions, thus preventing infection. Cryo-electron microscopy analysis suggests that twelve fibritin molecules attach to the phage neck with six molecules forming the collar and six molecules forming the whiskers.


Asunto(s)
Bacteriófago T4/química , Proteínas Estructurales Virales/química , Secuencia de Aminoácidos , Bacteriófago T4/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Proteínas Estructurales Virales/genética , Proteínas de la Cola de los Virus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...