Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 554(7693): 497-499, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29469097

RESUMEN

It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

2.
Nature ; 466(7302): 82-5, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596015

RESUMEN

Type Ia supernovae form an observationally uniform class of stellar explosions, in that more luminous objects have smaller decline-rates. This one-parameter behaviour allows type Ia supernovae to be calibrated as cosmological 'standard candles', and led to the discovery of an accelerating Universe. Recent investigations, however, have revealed that the true nature of type Ia supernovae is more complicated. Theoretically, it has been suggested that the initial thermonuclear sparks are ignited at an offset from the centre of the white-dwarf progenitor, possibly as a result of convection before the explosion. Observationally, the diversity seen in the spectral evolution of type Ia supernovae beyond the luminosity-decline-rate relation is an unresolved issue. Here we report that the spectral diversity is a consequence of random directions from which an asymmetric explosion is viewed. Our findings suggest that the spectral evolution diversity is no longer a concern when using type Ia supernovae as cosmological standard candles. Furthermore, this indicates that ignition at an offset from the centre is a generic feature of type Ia supernovae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...