Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Microbe ; 5(2): e109-e118, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278165

RESUMEN

BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Estados Unidos , Humanos , Animales , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Estudios Retrospectivos , República Democrática del Congo/epidemiología , Filogenia , Teorema de Bayes , Ebolavirus/genética , Brotes de Enfermedades , Genómica , Zoonosis/epidemiología
2.
PLoS One ; 18(5): e0278251, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200322

RESUMEN

A community-based coronavirus disease (COVID-19) active case-finding strategy using an antigen-detecting rapid diagnostic test (Ag-RDT) was implemented in the Democratic Republic of Congo (DRC) to enhance COVID-19 case detection. With this pilot community-based active case finding and response program that was designed as a clinical, prospective testing performance, and implementation study, we aimed to identify insights to improve community diagnosis and rapid response to COVID-19. This pilot study was modeled on the DRC's National COVID-19 Response Plan and the COVID-19 Ag-RDT screening algorithm defined by the World Health Organization (WHO), with case findings implemented in 259 health areas, 39 health zones, and 9 provinces. In each health area, a 7-member interdisciplinary field team tested the close contacts (ring strategy) and applied preventive and control measures to each confirmed case. The COVID-19 testing capacity increased from 0.3 tests per 10,000 inhabitants per week in the first wave to 0.4, 1.6, and 2.2 in the second, third, and fourth waves, respectively. From January to November 2021, this capacity increase contributed to an average of 10.5% of COVID-19 tests in the DRC, with 7,110 positive Ag-RDT results for 40,226 suspected cases and close contacts who were tested (53.6% female, median age: 37 years [interquartile range: 26.0-50.0)]. Overall, 79.7% (n = 32,071) of the participants were symptomatic and 7.6% (n = 3,073) had comorbidities. The Ag-RDT sensitivity and specificity were 55.5% and 99.0%, respectively, based on reverse transcription polymerase chain reaction analysis, and there was substantial agreement between the tests (k = 0.63). Despite its limited sensitivity, the Ag-RDT has improved COVID-19 testing capacity, enabling earlier detection, isolation, and treatment of COVID-19 cases. Our findings support the community testing of suspected cases and asymptomatic close contacts of confirmed cases to reduce disease spread and virus transmission.


Asunto(s)
COVID-19 , Humanos , Femenino , Adulto , Masculino , República Democrática del Congo/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Estudios Prospectivos , Proyectos Piloto , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...