Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 5(1): 14-19, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20652145

RESUMEN

Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4-6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young's modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale.

2.
Nanotechnology ; 19(27): 275702, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-21828714

RESUMEN

In this paper we report on the effect of temperature on the electrical conductivity of amorphous and nanoporous (pores size around 0.5 nm) carbon nanowires. Poly(furfuryl alcohol) nanowires with diameter varying from 150 to 250 nm were synthesized by a template-based technique and upon pyrolysis yielded amorphous carbon nanowires with nanosized pores in them. We observed significant (as high as 700%) decrease in electrical resistance when the nanowire surface temperature was increased from room temperature to 160 °C. On the basis of the experimental and microscopy evidence, we infer a thermally activated carrier transport mechanism to be the primary electrical transport mechanism, at elevated temperatures, in these semiconducting, amorphous, and nanoporous carbon nanowires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA