Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 383(6678): 86-93, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38175897

RESUMEN

The metal-halide ionic octahedron is the optoelectronic unit for halide perovskites, and a crown ether-assisted supramolecular assembly approach can pack various ionic octahedra into tunable symmetries. In this work, we demonstrate near-unity photoluminescence quantum yield (PLQY) blue and green emission with the supramolecular assembly of hafnium (Hf) and zirconium (Zr) halide octahedral clusters. (18C6@K)2HfBr6 powders showed blue emission with a near-unity PLQY (96.2%), and green emission was also achieved with (18C6@K)2ZrCl4Br2 powders at a PLQY of 82.7%. These highly emissive powders feature facile low-temperature solution-based synthesis conditions and maintain high PLQY in solution-processable semiconductor inks under ambient conditions, and they were used in thin-film displays and emissive three-dimensional-printed architectures that exhibited high spatial resolution.

2.
Nano Lett ; 23(24): 11469-11476, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38060980

RESUMEN

Energy funneling is a phenomenon that has been exploited in optoelectronic devices based on low-dimensional materials to improve their performance. Here, we introduce a new class of two-dimensional semiconductor, characterized by multiple regions of varying thickness in a single confined nanostructure with homogeneous composition. This "noninteger 2D semiconductor" was prepared via the structural transformation of two-octahedron-layer-thick (n = 2) 2D cesium lead bromide perovskite nanosheets; it consisted of a central n = 2 region surrounded by edge-lying n = 3 regions, as imaged by electron microscopy. Thicker noninteger 2D CsPbBr3 nanostructures were obtained as well. These noninteger 2D perovskites formed a laterally coupled quantum well band alignment with virtually no strain at the interface and no dielectric barrier, across which unprecedented intramaterial funneling of the photoexcitation energy was observed from the thin to the thick regions using time-resolved absorption and photoluminescence spectroscopy.

3.
Nature ; 621(7978): 282-288, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587347

RESUMEN

Although high-entropy materials are excellent candidates for a range of functional materials, their formation traditionally requires high-temperature synthetic procedures of over 1,000 °C and complex processing techniques such as hot rolling1-5. One route to address the extreme synthetic requirements for high-entropy materials should involve the design of crystal structures with ionic bonding networks and low cohesive energies. Here we develop room-temperature-solution (20 °C) and low-temperature-solution (80 °C) synthesis procedures for a new class of metal halide perovskite high-entropy semiconductor (HES) single crystals. Due to the soft, ionic lattice nature of metal halide perovskites, these HES single crystals are designed on the cubic Cs2MCl6 (M=Zr4+, Sn4+, Te4+, Hf4+, Re4+, Os4+, Ir4+ or Pt4+) vacancy-ordered double-perovskite structure from the self-assembly of stabilized complexes in multi-element inks, namely free Cs+ cations and five or six different isolated [MCl6]2- anionic octahedral molecules well-mixed in strong hydrochloric acid. The resulting single-phase single crystals span two HES families of five and six elements occupying the M-site as a random alloy in near-equimolar ratios, with the overall Cs2MCl6 crystal structure and stoichiometry maintained. The incorporation of various [MCl6]2- octahedral molecular orbitals disordered across high-entropy five- and six-element Cs2MCl6 single crystals produces complex vibrational and electronic structures with energy transfer interactions between the confined exciton states of the five or six different isolated octahedral molecules.

4.
J Am Chem Soc ; 144(27): 12450-12458, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35771005

RESUMEN

The structural diversity and tunable optoelectronic properties of halide perovskites originate from the rich chemistry of the metal halide ionic octahedron [MX6]n- (M = Pb2+, Sb3+, Te4+, Sn4+, Pt4+, etc.; X = Cl-, Br-, and I-). The properties of the extended perovskite solids are dictated by the assembly, connectivity, and interaction of these octahedra within the lattice environment. Hence, the ability to manipulate and control the assembly of the octahedral building blocks is paramount for constructing new perovskite materials. Here, we propose a systematic supramolecular strategy for the assembly of [MX6]n- octahedra into a solid extended network. Interaction of alkali metal-bound crown ethers with the [M(IV)X6]2- octahedron resulted in a structurally and optoelectronically tunable "dumbbell" structural unit in solution. Single crystals with diverse packing geometries and symmetries will form as the solid assembly of this new supramolecular building block. This supramolecular assembly route introduces a new general strategy for designing halide perovskite structures with potentially new optoelectronic properties.

5.
Nano Lett ; 21(20): 8856-8862, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34612654

RESUMEN

Traditional covalent semiconductors require complex processing methods for device fabrication due to their high cohesive energies. Here, we develop a stable, ligand-free perovskite semiconductor ink that can be used to make patterned semiconductor-based optoelectronics in one step. The perovskite ink is formed via the dissolution of crystals of vacancy-ordered double perovskite Cs2TeX6 (X = Cl-, Br-, I-) in polar aprotic solvents, leading to the stabilization of isolated [TeX6]2- octahedral anions and free Cs+ cations without the presence of ligands. The stabilization of the fundamental perovskite ionic octahedral building blocks in solution creates multifunctional inks with the ability to reversibly transform between the liquid ink and the solid-state perovskite crystalline system in air within minutes. These easily processable inks can be patterned onto various materials via dropcasting, spraying or painting, and stamping, highlighting the crucial role of solvated octahedral complexes toward the rapid formation of phase-pure perovskite structures in ambient conditions.

6.
Nano Lett ; 21(12): 5415-5421, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34120442

RESUMEN

The metal halide ionic octahedron, [MX6] (M = metal cation, X = halide anion), is considered to be the fundamental building block and functional unit of metal halide perovskites. By representing the metal halide ionic octahedron in halide perovskites as a super ion/atom, the halide perovskite can be described as an extended ionic octahedron network (ION) charge balanced by selected cations. This new perspective of halide perovskites based on ION enables the prediction of different packing and connectivity of the metal halide octahedra based on different solid-state lattices. In this work, a new halide perovskite Cs8Au3.5In1.5Cl23 was discovered on the basis of a BaTiO3-lattice ION {[InCl6][AuCl5][Au/InCl4]3}8-, which is assembled from three different ionic octahedra [InCl6], [AuCl6], and [Au/InCl6] and balanced by positively charged Cs cations. The success of this ION design concept in the discovery of Cs8Au3.5In1.5Cl23 opens up a new venue for the rational design of new halide perovskite materials.

7.
Proc Natl Acad Sci U S A ; 116(47): 23404-23409, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685626

RESUMEN

Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In+/In3+) inorganic halide perovskite with the composition of Cs2In(I)In(III)Cl6 in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group I4/m with a = 17.2604(12) Å, c = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...