Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753057

RESUMEN

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

2.
medRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370827

RESUMEN

Background: Weakness of facial, ocular, and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca 2+ homeostasis can contribute to disease pathology. Methods: We analysed exome and genome sequencing data from three unrelated individuals with congenital myopathy characterised by striking facial, ocular, and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-seq data of one proband and performed gene expression outlier analysis in 129 samples. Results: The three probands had remarkably similar clinical presentation with prominent facial, ocular, and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but most prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatiguability. While muscle biopsy on light microscopy did not show any obvious morphological abnormalities, ultrastructural analysis showed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum. DNA sequencing identified three unique homozygous loss of function variants in JPH1 , encoding junctophilin-1 in the three families; a stop-gain (c.354C>A; p.Tyr118*) and two frameshift (c.373del p.Asp125Thrfs*30 and c.1738del; p.Leu580Trpfs*16) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. Conclusions: Junctophilin-1 is critical to the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement. Key message: This study identified novel homozygous loss-of-function variants in the JPH1 gene, linking them to a unique form of congenital myopathy characterised by severe facial and ocular symptoms. Our research sheds light on the critical impact on junctophilin-1 function in skeletal muscle triad junction formation and the consequences of its disruption resulting in a myopathic phenotype. What is already known on this topic: Previous studies have shown that pathogenic variants in genes encoding triad proteins lead to various myopathic phenotypes, with clinical presentations often involving muscle weakness and myopathic facies. The triad structure is essential for excitation-contraction (EC) coupling and calcium homeostasis and is a key element in muscle physiology. What this study adds and how this study might affect research practice or policy: This study establishes that homozygous loss-of-function mutations in JPH1 cause a congenital myopathy predominantly affecting facial and ocular muscles. This study also provides clinical insights that may aid the clinicians in diagnosing similar genetically unresolved cases.

3.
Brain ; 146(12): 5235-5248, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503746

RESUMEN

The extracellular matrix (ECM) has an important role in the development and maintenance of skeletal muscle, and several muscle diseases are associated with the dysfunction of ECM elements. MAMDC2 is a putative ECM protein and its role in cell proliferation has been investigated in certain cancer types. However, its participation in skeletal muscle physiology has not been previously studied. We describe 17 individuals with an autosomal dominant muscular dystrophy belonging to two unrelated families in which different heterozygous truncating variants in the last exon of MAMDC2 co-segregate correctly with the disease. The radiological aspect of muscle involvement resembles that of COL6 myopathies with fat replacement at the peripheral rim of vastii muscles. In this cohort, a subfascial and peri-tendinous pattern is observed in upper and lower limb muscles. Here we show that MAMDC2 is expressed in adult skeletal muscle and differentiating muscle cells, where it appears to localize to the sarcoplasm and myonuclei. In addition, we show it is secreted by myoblasts and differentiating myotubes into to the extracellular compartment. The last exon encodes a disordered region with a polar residue compositional bias loss of which likely induces a toxic effect of the mutant protein. The precise mechanisms by which the altered MAMDC2 proteins cause disease remains to be determined. MAMDC2 is a skeletal muscle disease-associated protein. Its role in muscle development and ECM-muscle communication remains to be fully elucidated. Screening of the last exon of MAMDC2 should be considered in patients presenting with autosomal dominant muscular dystrophy, particularly in those with a subfascial radiological pattern of muscle involvement.


Asunto(s)
Distrofias Musculares , Adulto , Humanos , Distrofias Musculares/genética , Músculo Esquelético/metabolismo , Proteínas de la Matriz Extracelular
4.
Neurol Genet ; 9(2): e200064, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090938

RESUMEN

Objective: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the dystrophin gene (DMD). Hypermethylated CGG expansions within DIP2B 5' UTR are associated with an intellectual development disorder. Here, we demonstrate the diagnostic utility of genomic short-read sequencing (SRS) and transcriptome sequencing to identify a novel DMD structural variant (SV) and a DIP2B CGG expansion in a patient with DMD for whom conventional diagnostic testing failed to yield a genetic diagnosis. Methods: We performed genomic SRS, skeletal muscle transcriptome sequencing, and targeted programmable long-read sequencing (LRS). Results: The proband had a typical DMD clinical presentation, autism spectrum disorder (ASD), and dystrophinopathy on muscle biopsy. Transcriptome analysis identified 6 aberrantly expressed genes; DMD and DIP2B were the strongest underexpression and overexpression outliers, respectively. Genomic SRS identified a 216 kb paracentric inversion (NC_000023.11: g.33162217-33378800) overlapping 2 DMD promoters. ExpansionHunter indicated an expansion of 109 CGG repeats within the 5' UTR of DIP2B. Targeted genomic LRS confirmed the SV and genotyped the DIP2B repeat expansion as 270 CGG repeats. Discussion: Here, transcriptome data heavily guided genomic analysis to resolve a complex DMD inversion and a DIP2B repeat expansion. Longitudinal follow-up will be important for clarifying the clinical significance of the DIP2B genotype.

5.
Neuropathol Appl Neurobiol ; 48(7): e12846, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962550

RESUMEN

AIMS: Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS: Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS: We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.


Asunto(s)
Disferlina , Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Disferlina/genética , Proteínas de la Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patología , Distrofia Muscular de Cinturas/genética , Linaje , Masculino , Femenino
6.
Hum Mutat ; 43(9): 1216-1223, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35485770

RESUMEN

Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neurregulina-1 , Animales , Axones , Enfermedad de Charcot-Marie-Tooth/genética , Humanos , Vaina de Mielina , Neurregulina-1/genética , Células de Schwann , Pez Cebra/genética
7.
Brain ; 145(11): 3985-3998, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957489

RESUMEN

Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, most cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified 10 bi-allelic loss-of-function variants in the gene encoding obscurin (OBSCN) predisposing individuals to recurrent rhabdomyolysis. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in sarcoplasmic reticulum function and Ca2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in sarcoplasmic reticulum Ca2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca2+ back into the sarcoplasmic reticulum and/or a decrease in Ca2+ sarcoplasmic reticulum storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN-related disease and the clinical course of disease.


Asunto(s)
Calcio , Rabdomiólisis , Adolescente , Humanos , Rabdomiólisis/genética , Rabdomiólisis/diagnóstico , Rabdomiólisis/patología , Mialgia/genética , Retículo Sarcoplasmático/metabolismo , Pérdida de Heterocigocidad , Proteínas Serina-Treonina Quinasas , Factores de Intercambio de Guanina Nucleótido Rho/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...