Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 64(7): 3911-3939, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33755451

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Nucleósidos/uso terapéutico , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Aminoquinolinas/síntesis química , Aminoquinolinas/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Ratones SCID , Simulación del Acoplamiento Molecular , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Relación Estructura-Actividad
2.
Cancer Res ; 76(6): 1313-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26759243

RESUMEN

Small-molecule inhibitors of the bromodomain and extraterminal (BET) family of proteins are being tested in clinical trials for a variety of cancers, but patient selection strategies remain limited. This challenge is partly attributed to the heterogeneous responses elicited by BET inhibition (BETi), including cellular differentiation, senescence, and death. In this study, we performed phenotypic and gene-expression analyses of treatment-naive and engineered tolerant cell lines representing human melanoma and leukemia to elucidate the dominant features defining response to BETi. We found that de novo and acquired tolerance to BETi is driven by the robustness of the apoptotic response, and that genetic or pharmacologic manipulation of the apoptotic signaling network can modify the phenotypic response to BETi. We further reveal that the expression signatures of the apoptotic genes BCL2, BCL2L1, and BAD significantly predict response to BETi. Taken together, our findings highlight the apoptotic program as a determinant of response to BETi, and provide a molecular basis for patient stratification and combination therapy development.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HL-60 , Células HT29 , Humanos , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Methods Enzymol ; 513: 251-69, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22929773

RESUMEN

Many nuclear proteins alter their localization during the cell cycle. This includes proteins which regulate and execute cell cycle events and proteins involved in transcription and DNA repair. The core components of chromatin, the histone proteins, also change their modification state through the cell cycle. Chromatin immunoprecipitation (ChIP) makes it possible to localize chromatin-associated proteins to specific sequences in the genome and has revolutionized studies of transcription. Fewer studies have used ChIP to analyze protein localization or modification at specific stages in the cell cycle. This is in part because these studies require isolation of pure populations of cells at each stage of the cell cycle, which is challenging for many cell types. However, the ability to carry out ChIP from cells at specific stages in the cell cycle in some systems has revealed cell cycle regulation of chromatin localization, and cell cycle stage-specific functions and modification of chromatin proteins, providing incentive to pursue these experiments. This chapter presents protocols for isolating Drosophila S2 cells from all phases of the cell cycle using centrifugal elutriation and fluorescent-activated cell sorting. These cells are suitable for ChIP analysis.


Asunto(s)
Ciclo Celular , Separación Celular/métodos , Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Drosophila/citología , Citometría de Flujo/métodos , Animales , Línea Celular , Centrifugación/métodos , Cromatina/efectos de los fármacos , Cromosomas de Insectos/efectos de los fármacos , Cromosomas de Insectos/metabolismo , Colchicina/farmacología , Drosophila/metabolismo , Índice Mitótico , Transcripción Genética
4.
Mol Cell ; 46(6): 784-96, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22749399

RESUMEN

Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Represoras/metabolismo , Animales , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Drosophila/metabolismo , Humanos , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb , Proteínas Represoras/química
5.
PLoS Genet ; 8(12): e1003135, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284300

RESUMEN

Epigenetic regulation of gene expression, including by Polycomb Group (PcG) proteins, may depend on heritable chromatin states, but how these states can be propagated through mitosis is unclear. Using immunofluorescence and biochemical fractionation, we find PcG proteins associated with mitotic chromosomes in Drosophila S2 cells. Genome-wide sequencing of chromatin immunoprecipitations (ChIP-SEQ) from mitotic cells indicates that Posterior Sex Combs (PSC) is not present at well-characterized PcG targets including Hox genes in mitosis, but does remain at a subset of interphase sites. Many of these persistent sites overlap with chromatin domain borders described by Sexton et al. (2012), which are genomic regions characterized by low levels of long range contacts. Persistent PSC binding sites flank both Hox gene clusters. We hypothesize that disruption of long-range chromatin contacts in mitosis contributes to PcG protein release from most sites, while persistent binding at sites with minimal long-range contacts may nucleate re-establishment of PcG binding and chromosome organization after mitosis.


Asunto(s)
Cromatina/genética , Genes Homeobox/genética , Mitosis/genética , Proteínas del Grupo Polycomb/genética , Animales , Sitios de Unión , Línea Celular , Cromosomas/genética , Drosophila melanogaster/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Proteínas del Grupo Polycomb/metabolismo , Unión Proteica
6.
Dev Cell ; 21(5): 807-8, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22075142

RESUMEN

During mitosis, most transcription ceases. Mitotic gene bookmarking marks genes for reactivation to ensure reestablishment of transcription states and cell-cycle progression. In a recent issue of Nature Cell Biology, Zhao et al. (2011) investigate how gene bookmarking leads to accelerated kinetics of transcriptional reactivation after mitosis.

7.
Cell ; 137(1): 110-22, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19303136

RESUMEN

The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin-associated proteins and histone modifications. PRC1-class Polycomb group protein complexes are essential for development and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN , ADN/metabolismo , Proteínas Represoras/metabolismo , Animales , Drosophila , Histonas/metabolismo , Proteínas del Grupo Polycomb , Fase S , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...