Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39195376

RESUMEN

Mesoporous hydroxyapatite (HA) is widely used in various applications, such as the biomedical field, as a catalytic, as a sensor, and many others. The aim of this work was to obtain HA powders by means of chemical precipitation in a medium containing a polymer-polyvinyl alcohol or polyvinylpyrrolidone (PVP)-with concentrations ranging from 0 to 10%. The HA powders were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic emission spectroscopy with inductively coupled plasma, electron paramagnetic resonance, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The specific surface area (SSA), pore volume, and pore size distributions were determined by low-temperature nitrogen adsorption measurements, and the zeta potential was established. The formation of macropores in powder agglomerates was determined using SEM and TEM. The synthesis in 10% PVP increased the SSA from 101.3 to 158.0 m2/g, while the ripening for 7 days led to an increase from 112.3 to 195.8 m2/g, with the total pore volume rising from 0.37 to 0.71 cm3/g. These materials could be classified as meso-macroporous HA. Such materials can serve as the basis for various applications requiring improved textural properties and may lay the foundation for the creation of bulk 3D materials using a technique that allows for the preservation of their unique pore structure.

2.
Heliyon ; 10(4): e25291, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384581

RESUMEN

Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li+) is a promising candidate for modifying the biological behavior of HA. Li+ is present in trace amounts in the human body as an alkaline and bioelectric material. At the same time, the introduction of Li+ into the HA structure required charge balance compensation due to the difference in oxidation degree, and the scheme of this compensation is still an open question. In the present work, the results of the theoretical and experimental study of the Li+-doped HA synthesis are presented. According to X-ray diffraction data, Fourier transform infrared spectroscopy as well as the combination of electron paramagnetic resonance methods, the introduction of Li+ in the amount up to 0.05 mol% resulted in the preservation of the HA structure. Density functional theory calculations show that Li+ preferentially incorporates into the Ca (1) position with a small geometry perturbation. The less probable positioning in the Ca (2) position leads to a drastic perturbation of the anion channel.

3.
Materials (Basel) ; 16(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37445137

RESUMEN

The development of magnesium calcium phosphate bone cements (MCPCs) has garnered substantial attention. MCPCs are bioactive and biodegradable and have appropriate mechanical and antimicrobial properties for use in reconstructive surgery. In this study, the cement powders based on a (Ca + Mg)/P = 2 system doped with Zn2+ at 0.5 and 1.0 wt.% were obtained and investigated. After mixing with a cement liquid, the structural and phase composition, morphology, chemical structure, setting time, compressive strength, degradation behavior, solubility, antibacterial activities, and in vitro behavior of the cement materials were examined. A high compressive strength of 48 ± 5 MPa (mean ± SD) was achieved for the cement made from Zn2+ 1.0 wt.%-substituted powders. Zn2+ introduction led to antibacterial activity against Staphylococcus aureus and Escherichia coli strains, with an inhibition zone diameter of up to 8 mm. Biological assays confirmed that the developed cement is cytocompatible and promising as a potential bone substitute in reconstructive surgery.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770379

RESUMEN

Mesoporous hydroxyapatite (HA) materials demonstrate advantages as catalysts and as support systems for catalysis, as adsorbent materials for removing contamination from soil and water, and as nanocarriers of functional agents for bone-related therapies. The present research demonstrates the possibility of the enlargement of the Brunauer-Emmett-Teller specific surface area (SSA), pore volume, and average pore diameter via changing the synthesis medium and ripening the material in the mother solution after the precipitation processes have been completed. HA powders were investigated via chemical analysis, X-ray diffraction analysis, Fourier-transform IR spectroscopy, transmission electron microscopy (TEM), and scanning (SEM) electron microscopy. Their SSA, pore volume, and pore-size distributions were determined via low-temperature nitrogen adsorption measurements, the zeta potential was established, and electron paramagnetic resonance (EPR) spectroscopy was performed. When the materials were synthesized in water-ethanol and water-acetone media, the SSA and total pore volume were 52.1 m2g-1 and 116.4 m2g-1, and 0.231 and 0.286 cm3g-1, respectively. After ripening for 21 days, the particle morphology changed, the length/width aspect ratio decreased, and looser and smaller powder agglomerates were obtained. These changes in their characteristics led to an increase in SSA for the water and water-ethanol samples, while pore volume demonstrated a multiplied increase for all samples, reaching 0.593 cm3g-1 for the water-acetone sample.

5.
Enzyme Microb Technol ; 164: 110174, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36508942

RESUMEN

Recently, there has been increased interest in the synthesis of nanoparticles by using natural polysaccharides. These polysaccharides are eco-friendly, nontoxic, and cheap to prepare. On the other hand, the attention in hydrocolloids and films has significantly enhanced, and their application is very promising in the food, pharmaceutical, perfumery and cosmetics, oil, paper, and textile industries. In this context, the present study is aimed to prepare silver nanoparticles by using viscous and superviscous exopolysaccharides of the rhizobacterium Paenibacillus polymyxa strains, CCM 1465 and 88A, and examined the properties of the resultant nanoparticles. We examined the synthesis and properties of silver nanoparticles under variable synthetic conditions by using exopolysaccharides of the rhizobacteria Paenibacillus polymyxa CCM 1465 and 88A. To prepare nanoparticles, we used different combinations of exopolysaccharide and silver nitrate concentrations: 1-10 mg/mL and 1-40 mM, respectively. The resulting solutions were alkalinized from pH 7.5-12 and heated for 15, 30, and 60 min to determine the optimal synthetic conditions. We found that the exopolysaccharides of strains CCM 1465 and 88A reduced silver ions and acted as nanoparticle stabilizers. The prepared spherical, oval, and triangular particles were stable and ranged in size from 2 to 40 nm, depending on the strain and on the experimental conditions. The nanoparticles showed antibacterial and antifungal activity against Escherichia coli K-12, Pseudomonas aeruginosa 50.3, Bacillus subtilis 26-D, and Fusarium oxysporum. In addition, the nanoparticles were active against SK-MEL-2 human melanoma cells. This finding shows the promise of further research on the exopolysaccharides of P. polymyxa 1465 and 88А in different fields of science, including medicine.


Asunto(s)
Escherichia coli K12 , Nanopartículas del Metal , Paenibacillus polymyxa , Humanos , Nanopartículas del Metal/química , Plata/farmacología , Polisacáridos/farmacología , Antibacterianos/farmacología , Escherichia coli
6.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430792

RESUMEN

Gold nanoparticles as part of vaccines greatly increase antigen stability, antigen accumulation in the lymph nodes, and antigen uptake by antigen-presenting cells. The use of such particles as part of anticancer vaccines based on heat shock proteins to increase vaccine effectiveness is timely. We prepared and characterized nanoconjugates based on 15-nm gold nanoparticles and thermostable tumor antigens isolated from MH22a murine hepatoma cells. The whole-cell lysate of MH22a cells contained the main heat shock proteins. BALB/c mice were injected with the conjugates and then received transplants of MH22a cells. The highest titer was produced in mice immunized with the complex of gold nanoparticles + antigen with complete Freund's adjuvant. The immunized mice showed no signs of tumor growth for 24 days. They also showed a decreased production of the INF-γ, IL-6, and IL-1 proinflammatory cytokines compared to the mice immunized through other schemes. This study is the first to show that it is possible in principle to use gold nanoparticles in combination with thermostable tumor antigens for antitumor vaccination. Antitumor vaccines based on thermostable tumor antigens can be largely improved by including gold nanoparticles as additional adjuvants.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Vacunas , Ratones , Animales , Oro/química , Nanopartículas del Metal/química , Inmunización , Vacunación , Ratones Endogámicos BALB C , Antígenos de Neoplasias , Proteínas de Choque Térmico
7.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269340

RESUMEN

Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of ß-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by ß-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both ß-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1-50 µm, pore sizes of 1-10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4-1.4 µm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism's growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.

8.
Ultrasound Med Biol ; 48(5): 901-911, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35232607

RESUMEN

A sensor system based on a piezoelectric resonator with a lateral electric field in the frequency range 6-7 MHz of the electric field for virus detection is described. Through use of the transmissible virus causing gastroenteritis in pigs and specific antibodies, the possibility of detecting the virus in suspension in real time was determined. It was found that the frequency dependence of the real and imaginary parts of the electrical impedance of such a resonator loaded with a virus suspension changes significantly after the addition of specific antibodies to the suspension. No changes are observed if the antibodies are not specific. Thus, the results obtained illustrate the possibility of detecting viruses in situ, directly in the liquid phase, if the change in the real or imaginary parts of the electrical impedance after the addition of antibodies is used as an analytical signal. The possibility of virus detection in the presence of foreign viral particles has been illustrated.


Asunto(s)
Técnicas Biosensibles , Virus , Animales , Anticuerpos , Técnicas Biosensibles/métodos , Impedancia Eléctrica , Porcinos
9.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809993

RESUMEN

Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe3+ cations. The influence of Fe3+ amount on the phase composition, powders morphology, Brunauer-Emmett-Teller (BET) specific surface area (S), and pore size distribution were investigated, as well as electron paramagnetic resonance and Mössbauer spectroscopy analysis were performed. According to obtained data, the Fe3+ ions were incorporated in the HA lattice, and also amorphous Fe oxides were formed contributed to the gradual increase in the S and pore volume of the powders. The Density Functional Theory calculations supported these findings and revealed Fe3+ inclusion in the crystalline region with the hybridization among Fe-3d and O-2p orbitals and a partly covalent bond formation, whilst the inclusion of Fe oxides assumed crystallinity damage and rather occurred in amorphous regions of HA nanomaterial. In vitro tests based on the MG-63 cell line demonstrated that the introduction of Fe3+ does not cause cytotoxicity and led to the enhanced cytocompatibility of HA.

10.
ADMET DMPK ; 9(4): 255-266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35300372

RESUMEN

Silymarin (Sil) was conjugated to selenium nanoparticles (SeNPs) to increase Sil bioavailability. The conjugates were monodisperse; the average diameter of the native SeNPs was ~ 20-50 ± 1.5 nm, whereas that of the conjugates was 30-50 ± 0.5 nm. The use of SeNPs to increase the bioavailability of Sil was examined with the MH-22a, EPNT-5, HeLa, Hep-2, and SPEV-2 cell lines. The EPNT-5 (glioblastoma) cells were the most sensitive to the conjugates compared to the conjugate-free control. The conjugates increased the activity of cellular dehydrogenases and promoted the penetration of Sil into the intracellular space. Possibly, SeNPs play the main part in Sil penetration of cells and Sil penetration is not associated with phagocytosis. Thus, SeNPs are promising for use as a Sil carrier and as protective antigens.

11.
Materials (Basel) ; 13(19)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33022953

RESUMEN

Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn2+ and Mn3+ oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.

12.
Ultrasound Med Biol ; 46(7): 1727-1737, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376190

RESUMEN

The interaction of microbial cells with antibody-gold nanoparticle conjugates in conductive suspensions was experimentally studied by using an acoustic slot-mode sensor. The sensor consisted of a piezoelectric plate with a propagating acoustic wave and a liquid container located above this plate with a given gap. An analysis of the measured parameters of the sensor revealed that the specific interaction of bacterial cells with the conjugates led to a stronger change in the sensor output signal than the specific interaction of bacterial cells with antibodies. The measurements were made for Azospirillum brasilense Sp7 cells in buffer with an initial conductivity of 5-30 µS/cm. The limit of cell detection with the conjugates was 103 cells/mL, and the analysis took about 4 min. The advantage of the sensor is the possibility of repeated use and cleaning of the liquid container without damaging the sensor's elements. These results are promising for use in rapid test systems for the direct detection of microbial cells in actual samples of liquids in medical diagnostics.


Asunto(s)
Carga Bacteriana/métodos , Nanopartículas del Metal , Acústica , Azospirillum brasilense , Escherichia coli K12 , Oro , Límite de Detección , Sensibilidad y Especificidad , Sonido
13.
Molecules ; 24(16)2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31408975

RESUMEN

Intrinsically disordered proteins play a central role in dynamic regulatory and assembly processes in the cell. Recently, a human κ-casein proteolytic fragment called lactaptin (8.6 kDa) was found to induce apoptosis of human breast adenocarcinoma MCF-7 and MDA-MB-231 cells with no cytotoxic activity toward normal cells. Earlier, we had designed some recombinant analogs of lactaptin and compared their biological activity. Among these analogs, RL2 has the highest antitumor activity, but the amino acid residues and secondary structures that are responsible for RL2's activity remain unclear. To elucidate the structure-activity relations of RL2, we studied the structural and aggregation features of this fairly large intrinsically disordered fragment of human milk κ-casein by a combination of physicochemical methods: NMR, paramagnetic relaxation enhancement (PRE), Electron Paramagnetic Resonance (EPR), circular dichroism, dynamic light scattering, atomic force microscopy, and a cytotoxic activity assay. It was found that in solution, RL2 exists as stand-alone monomeric particles and large aggregates. Whereas the disulfide-bonded homodimer turned out to be more prone to assembly into large aggregates, the monomer predominantly forms single particles. NMR relaxation analysis of spin-labeled RL2 showed that the RL2 N-terminal region, which is essential not only for multimerization of the peptide but also for its proapoptotic action on cancer cells, is more ordered than its C-terminal counterpart and contains a site with a propensity for α-helical secondary structure.


Asunto(s)
Antineoplásicos/química , Caseínas/química , Péptidos de Penetración Celular/química , Proteínas Intrínsecamente Desordenadas/química , Secuencia de Aminoácidos , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Caseínas/biosíntesis , Caseínas/genética , Caseínas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/biosíntesis , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/farmacología , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/biosíntesis , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/farmacología , Células MCF-7 , Agregado de Proteínas/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad
14.
ACS Biomater Sci Eng ; 5(12): 6632-6644, 2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33423482

RESUMEN

Succeeding in the substitution of pharmaceutical compounds with ions deliverable with the use of resorbable biomaterials could have far-reaching benefits for medicine and economy. Calcium phosphates are known as excellent accommodators of foreign ions. Manganese, the fifth most abundant metal on Earth was studied here as an ionic dopant in ß-tricalcium phosphate (ß-TCP) ceramics. ß-TCP containing different amounts of Mn2+ ions per MnxCa3-x(PO4)2 formula (x = 0, 0.001, 0.01, and 0.1) was investigated for a range of physicochemical and biological properties. The results suggested the role of Mn2+ as a structure booster, not breaker. Mn2+ ions increased the size of coherent X-ray scattering regions averaged across all crystallographic directions and also lowered the temperature of transformation of the hydroxyapatite precursor to ß-TCP. The particle size increased fivefold, from 20 to 100 nm, in the 650-750 °C region, indicating that the reaction of formation of ß-TCP was accompanied by a considerable degree of grain growth. The splitting of the antisymmetric stretching mode of the phosphate tetrahedron occurred proportionally to the Mn2+ content in the material, while electron paramagnetic resonance spectra suggested that Mn2+ might substitute for three out of five possible calcium ion positions in the unit cell of ß-TCP. The biological effects of Mn-free ß-TCP and Mn-doped ß-TCP were selective: moderately proliferative to mammalian cells, moderately inhibitory to bacteria, and insignificant to fungi. Unlike pure ß-TCP, ß-TCP doped with the highest concentration of Mn2+ ions significantly inhibited the growth of all bacterial species tested: Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus faecalis. The overall effect against the Gram-positive bacteria was more intense than against the Gram-negative microorganisms. Meanwhile, ß-TCP alone had an augmentative effect of the viability of adipose-derived mesenchymal stem cells (ADMSCs) and the addition of Mn2+ tended to reduce the extent of this augmentative effect, but without imparting any toxicity. For all Mn-doped ß-TCP concentrations except the highest, the cell viability after 72 h incubation was significantly higher than that of the negative control. Assays evaluating the effect of Mn2+-containing ß-TCP formulations on the differentiation of ADMSCs into three different lineages-osteogenic, adipogenic, and chondrogenic-demonstrated no inhibitory or adverse effects compared to pure ß-TCP and powder-free positive controls. Still, ß-TCP delivering the lowest amount of Mn2+ seemed most effective in sustaining the differentiation process toward all three phenotypes, indicating that the dose of Mn2+ in ß-TCP need not be excessive to be effective.

15.
Appl Microbiol Biotechnol ; 103(1): 437-447, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30402771

RESUMEN

Recent years have seen extremely fast development of new viral nanovaccines and diagnostic agents using nanostructures prepared by biological and chemical synthesis. We used spherical gold nanoparticles (average diameter, 15 nm) as a platform for the antigen for swine transmissible gastroenteritis virus (TGEV). The literature data demonstrate that immunization of animals with the TGEV antigen coupled to gold nanoparticles (GNPs) not only activates antigen-presenting cells but also increases the proliferative activity of splenic lymphoid (antibody-forming) cells. The contents of γ-IFN, IL-1ß, and IL-6 in animals immunized with GNP-antigen conjugates were found to be higher than those in intact animals or in animals given the antigen alone. The increased concentration of IL-1ß in the immunized animals directly correlated with the activity of macrophages and stimulated B cells, which produce this cytokine when activated. The increased concentration of IL-6 indicates that the injected preparations are stimulatory to cellular immunity. Immunization with the TGEV antigen conjugated to GNPs as a carrier activates the respiratory activity of lymphoid cells and peritoneal macrophages, which is directly related to their transforming activity and to the activation of antibody generation. Furthermore, the use of this conjugate allows marked improvement of the structure of the animals' immune organs and restores the morphological-functional state of these organs. The microanatomical changes (increased number of follicles) indicate the activation of the B-dependent zone of the spleen and, consequently, the development of a humoral-type immunological reaction. The degradative processes observed in the animals immunized with TGEV antigen alone are evidence of weak resistance to pathogen attack. These results can be used to develop vaccines against this infection by employing TGEV antigen coupled to gold nanoparticles as a carrier.


Asunto(s)
Portadores de Fármacos/farmacología , Inmunización/métodos , Nanopartículas del Metal/administración & dosificación , Virus de la Gastroenteritis Transmisible/inmunología , Animales , Antígenos Virales/química , Portadores de Fármacos/administración & dosificación , Oro , Cobayas , Interferón gamma/metabolismo , Macrófagos Peritoneales/inmunología , Masculino , Nanopartículas del Metal/química , Bazo/citología , Bazo/inmunología , Virus de la Gastroenteritis Transmisible/genética , Virus de la Gastroenteritis Transmisible/patogenicidad
16.
Mater Sci Eng C Mater Biol Appl ; 94: 798-810, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423766

RESUMEN

Self-hardening calcium phosphate cements present ideal bone tissue substitutes from the standpoints of bioactivity and biocompatibility, yet they suffer from (a) weak mechanical properties, (b) negligible osteoinduction without the use of exogenous growth factors, and (c) a lack of intrinsic antibacterial activity. Here we attempt to improve on these deficiencies by studying the properties of self-setting Fe-doped bone-integrative cements containing two different concentrations of the dopant: 0.49 and 1.09 wt% Fe. The hardening process, which involved the transformation of Fe-doped ß-tricalcium phosphate (Fe-TCP) to nanocrystalline brushite, was investigated in situ by continuously monitoring the cements using the Energy Dispersive X-Ray Diffraction technique. The setting time was 20 min and the hardening time 2 h, but it took 50 h for the cement to completely stabilize compositionally and mechanically. Still, compared to other similar systems, the phase transformation during hardening was relatively fast and it also followed a relatively simple reaction path, virtually free of complex intermediates and noisy background. Mössbauer spectrometry demonstrated that 57Fe atoms in Fe-TCP were located in two non-equivalent crystallographic sites and distributed over positions with a strong crystal distortion. The pronounced presence of ultrafine crystals in the final, brushite phase contributed to the reduction of the porosity and thereby to the enhancement of the mechanical properties. The compressive strength of the hardened TCP cements increased by more than twofold when Fe was added as a dopant, i.e., from 11.5 ±â€¯0.5 to 24.5 ±â€¯2.0 MPa. The amount of iron released from the cements in physiological media steadied after 10 days and was by an order of magnitude lower than the clinical threshold that triggers the toxic response. The cements exhibited osteoinductive activity, as observed from the elevated levels of expression of genes encoding for osteocalcin and Runx2 in both undifferentiated and differentiated MC3T3-E1 cells challenged with the cements. The osteoinductive effect was inversely proportional to the content of Fe ions in the cements, indicating that an excessive amount of iron can have a detrimental effect on the induction of bone growth by osteoblasts in contact with the cement. In contrast, the antibacterial activity of the cement in the agar assay increased against all four bacterial species analysed (E. coli, S. enteritidis, P. aeruginosa, S. aureus) in direct proportion with the concentration of Fe ions in it, indicating their key effect on the promotion of the antibacterial effect in this material. This effect was less pronounced in broth assays. Experiments involving co-incubation of cements with cells in an alternate magnetic radiofrequency field for 30 min demonstrated a good potential for the use of these magnetic cements in hyperthermia cancer therapies. Specifically, the population of human glioblastoma cells decreased six-fold at the 24 h time point following the end of the magnetic field treatment, while the population of the bone cancer cells dropped approximately twofold. The analysis of the MC3T3-E1 cell/cement interaction reiterated the effects of iron in the cement on the bone growth marker expression by showing signs of adverse effects on the cell morphology and proliferation only for the cement containing the higher concentration of Fe ions (1.09 wt%). Biological testing concluded that the effects of iron are beneficial from the perspective of a magnetic hyperthermia therapy and antibacterial prophylaxis, but its concentration in the material must be carefully optimized to avoid the adverse effects induced above a certain level of iron concentrations.


Asunto(s)
Antibacterianos/farmacología , Cementos para Huesos/farmacología , Fosfatos de Calcio/química , Oro/farmacología , Hierro/química , Oseointegración/efectos de los fármacos , Plata/farmacología , Animales , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Cinética , Ratones , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Polvos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espectroscopía de Mossbauer , Espectrometría Raman , Temperatura , Difracción de Rayos X
17.
Int Immunopharmacol ; 54: 163-168, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29149704

RESUMEN

Gold nanoparticles (GNPs) are advantageous as an adjuvant in the design of effective vaccines and in the preparation of high-affinity antibodies to haptens and complete antigens. Another method of activating immunocompetent cells with colloidal gold is to conjugate GNPs with CpG oligodeoxynucleotides (ODNs). We examined how the size and shape of GNPs and various combinations of GNPs and CpG ODNs 1826 affect the immune response. When animals were injected with a model antigen (BSA) coupled to gold nanospheres (diameters, 15 and 50nm), nanorods, nanoshells, and nanostars, the titers of the resultant antibodies differed substantially. The antibody titers decreased in the sequence GNPs-50nm>GNPs-15nm>nanoshells>nanostars>nanorods>native BSA. We conclude that 50 and 15nm gold nanospheres are the optimal antigen carrier and adjuvant for immunization. The highest titer of anti-BSA antibodies was detected in the blood serum of mice immunized simultaneously with BSA-GNP and CpG-GNP conjugates.


Asunto(s)
Oro Coloide/uso terapéutico , Nanopartículas/uso terapéutico , Vacunas/inmunología , Adyuvantes Inmunológicos , Animales , Animales no Consanguíneos , Formación de Anticuerpos , Oro/química , Ratones , Oligodesoxirribonucleótidos/química , Tamaño de la Partícula , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/inmunología , Vacunas/química
18.
Mater Sci Eng C Mater Biol Appl ; 79: 270-279, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28629018

RESUMEN

A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (ß-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells.


Asunto(s)
Cementos para Huesos/química , Animales , Bacterias , Fosfatos de Calcio , Cobre , Escherichia coli , Humanos , Ratones , Difracción de Rayos X
19.
J Cancer Res Ther ; 11(2): 345-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26148598

RESUMEN

PURPOSE: Endometrial carcinoma is the most common gynecologic malignancy which is associated with a poor prognosis when diagnosed at an advanced stage; therefore, the discovery of efficacious new drugs is required to reinforce conventional chemotherapy. Short-term cultures of primary cells from endometrial tumors could be used for testing new anticancer therapeutics as well as for the development of personalized cancer therapy strategy. Here, the antitumor effect of a recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, was examined against primary human endometrial cancer cells. MATERIALS AND METHODS: Primary cell cultures of malignant and normal human endometrium were performed by enzymatic digestion of endometrial tissue from biopsy material. Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the messenger ribonucleic acid (mRNA) state of estrogen (ERs) and progesterone (PRs) hormone receptors and aromatase (Cyp 19) in cell cultures. Dynamic monitoring of cell adhesion and proliferation was made using the iCELLigence system (ASEA Biosciences). The sensitivity of cell cultures to conventional anticancer drugs and the lactaptin analog was estimated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, flow cytometry, and the iCELLligence system. RESULTS: Established short-term primary cultures of endometrial cancer cells were ERα/ERß/PR-positive and sensitive for RL2. The IC 50 values of doxorubicin and cisplatin were determined for all of the primary cultures designed. KE normal cells displaying low Cyp19 mRNA levels and high ERß and PR mRNA levels were more resistant to RL2 treatment as well as to cisplatin and doxorubicin. CONCLUSIONS: Our results indicate that the recombinant analog of lactaptin, RL2, exerts cytotoxic effects against primary hormone-dependent endometrial tumor cells in vitro with features of apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Caseínas/farmacología , Neoplasias Endometriales/tratamiento farmacológico , Péptidos/farmacología , Adulto , Apoptosis/efectos de los fármacos , Aromatasa/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Neoplasias Endometriales/metabolismo , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Persona de Mediana Edad , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Receptores de Progesterona/metabolismo
20.
J Immunoassay Immunochem ; 36(1): 100-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24624967

RESUMEN

Mini-antibodies that have specific ferritin response have been produced for the first time using sheep's phage libraries (Griffin.1, Medical Research Council, Cambridge, UK). Produced phage antibodies were used for the first time for the development of diagnostic test kits for ferritin detection in the blood of cattle. The immunodot assay with secondary biospecific labeling is suggested as means of ferritin detection in cow blood serum (antiferritin phage antibodies and rabbit antiphage antibodies conjugated with different labels). Сolloidal gold, gold nanoshells, and horse reddish peroxidase used as labels have shown a similar response while detecting concentration of ferritin (0.2 mg/mL). It is shown that the method of solid-phase immunoassay with a visual view of the results allows determination of the minimum concentration of ferritin in the blood of cows at 0.225 g/mL.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Ferritinas/sangre , Animales , Especificidad de Anticuerpos/inmunología , Bovinos , Ferritinas/inmunología , Ferritinas/aislamiento & purificación , Immunoblotting , Hígado/química , Hígado/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA