Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Malar J ; 22(1): 123, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055836

RESUMEN

BACKGROUND: Malaria remains one of the main causes of morbidity and mortality in Cameroon. To inform vector control intervention decision making, malaria vector surveillance was conducted monthly from October 2018 to September 2020 in five selected sentinel sites (Gounougou and Simatou in the North, and Bonabéri, Mangoum and Nyabessang in the South). METHODS: Human landing catches (HLCs), U.S. Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSCs) were used to assess vector density, species composition, human biting rate (HBR), endophagic index, indoor resting density (IRD), parity, sporozoite infection rates, entomological inoculation rate (EIR), and Anopheles vectorial capacity. RESULTS: A total of 139,322 Anopheles mosquitoes from 18 species (or 21 including identified sub-species) were collected across all sites. Out of the 18 species, 12 were malaria vectors including Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l.., Anopheles nili, Anopheles moucheti, Anopheles paludis, Anopheles demeilloni, Anopheles. pharoensis, Anopheles ziemanni, Anopheles multicinctus, Anopheles tenebrosus, Anopheles rufipes, and Anopheles marshallii. Anopheles gambiae s.l. remains the major malaria vector (71% of the total Anopheles) collected, though An. moucheti and An. paludis had the highest sporozoite rates in Nyabessang. The mean indoor HBR of Anopheles ranged from 11.0 bites/human/night (b/h/n) in Bonabéri to 104.0 b/h/n in Simatou, while outdoors, it varied from 24.2 b/h/n in Mangoum to 98.7 b/h/n in Simatou. Anopheles gambiae s.l. and An. moucheti were actively biting until at least 8:00 a.m. The mean Anopheles IRD was 17.1 females/room, and the parity rate was 68.9%. The mean EIRs for each site were 55.4 infective bites/human/month (ib/h/m) in Gounougou, 99.0 ib/h/m in Simatou, 51.2 ib/h/m in Mangoum, 24.4 ib/h/m in Nyabessang, and 18.1 ib/h/m in Bonabéri. Anopheles gambiae s.l. was confirmed as the main malaria vector with the highest vectorial capacity in all sites based on sporozoite rate, except in Nyabessang. CONCLUSION: These findings highlight the high malaria transmission occurring in Cameroon and will support the National Malaria Control Program to design evidence-based malaria vector control strategies, and deployment of effective and integrated vector control interventions to reduce malaria transmission and burden in Cameroon, where several Anopheles species could potentially maintain year-round transmission.


Asunto(s)
Anopheles , Malaria , Piretrinas , Animales , Femenino , Humanos , Malaria/prevención & control , Camerún/epidemiología , Mosquitos Vectores , Esporozoítos
2.
Pathogens ; 11(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215196

RESUMEN

Understanding how multiple insecticide resistance mechanisms occur in malaria vectors is essential for efficient vector control. This study aimed at assessing the evolution of metabolic mechanisms and Kdr L995F/S resistance alleles in Anopheles gambiae s.l. from North Cameroon, following long-lasting insecticidal nets (LLINs) distribution in 2011. Female An. gambiae s.l. emerging from larvae collected in Ouro-Housso/Kanadi, Be-Centre, and Bala in 2011 and 2015, were tested for susceptibility to deltamethrin + piperonyl butoxide (PBO) or SSS-tributyl-phosphoro-thrithioate (DEF) synergists, using the World Health Organization's standard protocol. The Kdr L995F/S alleles were genotyped using Hot Ligation Oligonucleotide Assay. Tested mosquitoes identified using PCR-RFLP were composed of An. arabiensis (68.5%), An. coluzzii (25.5%) and An. gambiae (6%) species. From 2011 to 2015, metabolic resistance increased in Ouro-Housso/Kanadi (up to 89.5% mortality to deltametnrin+synergists in 2015 versus <65% in 2011; p < 0.02), while it decreased in Be-Centre and Bala (>95% mortality in 2011 versus 42-94% in 2015; p < 0.001). Conversely, the Kdr L995F allelic frequencies slightly decreased in Ouro-Housso/Kanadi (from 50% to 46%, p > 0.9), while significantly increasing in Be-Centre and Bala (from 0-13% to 18-36%, p < 0.02). These data revealed two evolutionary trends of deltamethrin resistance mechanisms; non-pyrethroid vector control tools should supplement LLINs in North Cameroon.

3.
Malar J ; 20(1): 316, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34261475

RESUMEN

BACKGROUND: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information. METHODS: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle in 10 countries in sub-Saharan Africa using 13,639 wild-collected Anopheles gambiae sensu lato (s.l.) (56 vector populations per dose) and 4,494 pyrethroid-susceptible insectary mosquitoes from 8 colonized strains. In parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 16 countries using 23,422 wild-collected, pyrethroid-resistant An. gambiae s.l. (259 vector populations). Exposure time was 60 min, with mortality recorded at 24, 48 and 72 h after exposure. RESULTS: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72-h mortality of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 200 µg AI/bottle, respectively. Log-probit analysis of the five concentrations tested determined that the LC95 of wild An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8-119.5). The discriminating concentration of 203.8 µg AI/bottle (95% CI: 146-359) was calculated by multiplying the LC95 by three. However, the difference in mortality between 100 and 200 µg AI/bottle was minimal and large-scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 countries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h. CONCLUSIONS: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable discriminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. Testing in 16 countries in sub-Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosquitoes with multiple resistance mechanisms to pyrethroids.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas/farmacología , Piretrinas/farmacología , Animales , Relación Dosis-Respuesta a Droga
4.
Parasit Vectors ; 12(1): 297, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31196161

RESUMEN

BACKGROUND: Effective malaria control relies on evidence-based interventions. Anopheline behaviour and Plasmodium infections were investigated in North Cameroon, following long-lasting insecticidal net (LLIN) distribution in 2010. METHODS: During four consecutive years from 2011 to 2014, adult mosquitoes were collected indoors, outdoors and in exit traps across 38 locations in the Garoua, Pitoa and Mayo-Oulo health districts. Anophelines were morphologically and molecularly identified, then analysed for blood meal origins and Plasmodium falciparum circumsporozoite protein (Pf-CSP). Blood from children under 5 years-old using LLINs was examined for Plasmodium infections. RESULTS: Overall, 9376 anophelines belonging to 14 species/sibling species were recorded. Anopheles gambiae (s.l.) [An. arabiensis (73.3%), An. coluzzii (17.6%) and An. gambiae (s.s.) (9.1%)] was predominant (72%), followed by An. funestus (s.l.) (20.5%) and An. rufipes (6.5%). The recorded blood meals were mainly from humans (28%), cattle (15.6%) and sheep (11.6%) or mixed (45%). Pf-CSP rates were higher indoors (3.2-5.4%) versus outdoors (0.8-2.0%), and increased yearly (χ2 < 18, df = 10, P < 0.03). Malaria prevalence in children under 5 years-old, in households using LLINs was 30% (924/3088). CONCLUSIONS: The present study revealed the variability of malaria vector resting and feeding behaviour, and the persistence of Plasmodium infections regardless the use of LLINs. Supplementary interventions to LLINs are therefore needed to sustain malaria prevention in North Cameroon.


Asunto(s)
Anopheles/fisiología , Control de Enfermedades Transmisibles , Conducta Alimentaria , Malaria Falciparum/prevención & control , Animales , Anopheles/parasitología , Sangre/parasitología , Camerún/epidemiología , Mosquiteros Tratados con Insecticida , Malaria Falciparum/epidemiología , Control de Mosquitos , Mosquitos Vectores/parasitología , Mosquitos Vectores/fisiología , Plasmodium falciparum , Proteínas Protozoarias/genética
5.
Biomed Res Int ; 2019: 9709013, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139663

RESUMEN

Malaria endemicity in Cameroon greatly varies according to ecological environment. In such conditions, parasitaemia, which is associated with fever, may not always suffice to define an episode of clinical malaria. The evaluation of malaria control intervention strategies mostly consists of identifying cases of clinical malaria and is crucial to promote better diagnosis for accurate measurement of the impact of the intervention. We sought out to define and quantify clinical malaria cases in children from three health districts in the Northern region of Cameroon. A cohort study of 6,195 children aged between 6 and 120 months was carried out during the raining season (July to October) between 2013 and 2014. Differential diagnosis of clinical malaria was performed using the parasite density and axillary temperature. At recruitment, patients with malaria-related symptoms (fever [axillary temperature ≥ 37.5°C], chills, severe malaise, headache, or vomiting) and a malaria positive blood smear were classified under clinical malaria group. The malaria attributable fraction was calculated using logistic regression models. Plasmodium falciparum was responsible for over 91% of infections. Children from Pitoa health district had the highest number of asymptomatic infections (45.60%) compared to those from Garoua and Mayo Oulo. The most suitable cut-off for the association between parasite densities and fever was found among children less than 24 months. Overall, parasite densities that ranged above 3,200 parasites per µl of blood could be used to define the malaria attributable fever cases. In groups of children aged between 24 and 59 months and 60 and 94 months, the optimum cut-off parasite density was 6,400 parasites per µl of blood, while children aged between 95 and 120 months had a cut-off of 800 parasites per µl of blood. In the same ecoepidemiological zone, clinical malaria case definitions are influenced by age and location (health district) and this could be considered when evaluating malaria intervention strategies in endemic areas.


Asunto(s)
Malaria/epidemiología , Animales , Camerún/epidemiología , Niño , Estudios de Cohortes , Geografía , Humanos , Malaria/parasitología , Parásitos/fisiología , Prevalencia , Sensibilidad y Especificidad
6.
PLoS One ; 14(2): e0212024, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30779799

RESUMEN

The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization's (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70-85% to 49-73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91-97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0-30% in 2011 to 18-61% in 2014-2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon.


Asunto(s)
Anopheles/efectos de los fármacos , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/genética , Anopheles/crecimiento & desarrollo , Camerún , Femenino , Frecuencia de los Genes , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo , Malaria/prevención & control , Malaria/transmisión , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/crecimiento & desarrollo , Planificación Social , Análisis Espacio-Temporal , Remodelación Urbana
7.
Lancet Infect Dis ; 18(6): 640-649, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29650424

RESUMEN

BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Asunto(s)
Culicidae , Mosquiteros Tratados con Insecticida , Malaria , Control de Mosquitos , Mosquitos Vectores , Piretrinas , Adolescente , Animales , Niño , Preescolar , Humanos , Lactante , África del Sur del Sahara/epidemiología , Estudios de Cohortes , Culicidae/efectos de los fármacos , India/epidemiología , Resistencia a los Insecticidas , Internacionalidad , Malaria/epidemiología , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Estudios Prospectivos , Piretrinas/farmacología , Organización Mundial de la Salud
8.
Parasit Vectors ; 11(1): 253, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669580

RESUMEN

BACKGROUND: Following the recent discovery of the role of Anopheles rufipes Gough, 1910 in human malaria transmission in the northern savannah of Cameroon, we report here additional information on its feeding and resting habits and its susceptibility to the pyrethroid insecticide deltamethrin. METHODS: From 2011 to 2015, mosquito samples were collected in 38 locations across Garoua, Mayo Oulo and Pitoa health districts in North Cameroon. Adult anophelines collected using outdoor clay pots, window exit traps and indoor spray catches were checked for feeding status, blood meal origin and Plasmodium circumsporozoite protein. The susceptibility of field-collected An. rufipes to deltamethrin was assessed using WHO standard procedures. RESULTS: Of 9327 adult Anopheles collected in the 38 study sites, An. rufipes (6.5%) was overall the fifth most abundant malaria vector species following An. arabiensis (52.4%), An. funestus (s.l.) (20.8%), An. coluzzii (12.6%) and An. gambiae (6.8%). This species was found outdoors (51.2%) or entering houses (48.8%) in 35 suburban and rural locations, together with main vector species. Apart from human blood with index of 37%, An. rufipes also fed on animals including cows (52%), sheep (49%), pigs (16%), chickens (2%) and horses (1%). The overall parasite infection rate of this species was 0.4% based on the detection of P. falciparum circumsporozoite proteins in two of 517 specimens tested. Among the 21 An. rufipes populations assessed for deltamethrin susceptibility, seven populations were classified as "susceptible" (mortality ≥ 98%) , ten as "probable resistant" with a mortality range of 90-97% and four as "resistant" with a mortality range of 80-89%. CONCLUSIONS: This study revealed changeable resting and feeding behaviour of An. rufipes, as well as further evidence on its ability to carry human malaria parasites in North Cameroon. Besides, this species is developing physiological resistance to deltamethrin insecticide which is used in treated nets and agriculture throughout the country, and should be regarded as one of potential targets for the control of residual malaria parasite transmission in Africa.


Asunto(s)
Anopheles/efectos de los fármacos , Fenómenos Ecológicos y Ambientales , Resistencia a los Insecticidas , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Nitrilos/farmacología , Piretrinas/farmacología , Animales , Anopheles/fisiología , Conducta Animal , Camerún/epidemiología , Bovinos , Vectores de Enfermedades , Femenino , Humanos , Malaria/epidemiología , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Malaria Falciparum/parasitología , Control de Mosquitos/métodos , Plasmodium falciparum/efectos de los fármacos
9.
Parasit Vectors ; 10(1): 22, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077167

RESUMEN

BACKGROUND: As part of a study to determine the impact of insecticide resistance on the effectiveness of long-lasting insecticide treated nets (LLINs) in the north of Cameroon, the unexpectedly high density and anthropophilic behaviour of Anopheles rufipes lead us to investigate this species bionomics and role in human malaria parasite transmission. METHODS: For four consecutive years (2011-2014), annual cross-sectional sampling of adult mosquitoes was conducted during the peak malaria season (September-October) in three health districts in northern Cameroon. Mosquitoes sampled by human landing catch and pyrethrum spray catch methods were morphologically identified, their ovaries dissected for parity determination and Anopheles gambiae siblings were identified by molecular assay. Infection with P. falciparum and blood meal source in residual fauna of indoor resting anopheline mosquitoes were determined by enzyme-linked-immunosorbent assays. RESULTS: Anopheles gambiae (sensu lato) (s.l.) comprised 18.4% of mosquitoes collected with An. arabiensis representing 66.27% of the sibling species. The proportion of An. rufipes (2.7%) collected was high with a human-biting rate ranging between 0.441 and 11.083 bites/person/night (b/p/n) and an anthropophagic rate of 15.36%. Although overall the members of An. gambiae complex were responsible for most of the transmission with entomological inoculation rates (EIR) reaching 1.221 infective bites/person/night (ib/p/n), An. arabiensis and An. coluzzii were the most implicated. The roles of An. funestus, An. pharoensis and An. paludis were minor. Plasmodium falciparum circumsporozoite protein rate in Anopheles rufipes varied from 0.6 to 5.7% with EIR values between 0.010 and 0.481 ib/p/n. CONCLUSIONS: The study highlights the epidemiological role of An. rufipes alongside the members of the An. gambiae complex, and several other sympatric species in human malaria transmission during the wet season in northern Cameroon. For the first time in Cameroon, An. rufipes has been shown to be an important local malaria vector, emphasising the need to review the malaria entomological profile across the country as pre-requisite to effective vector management strategies.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Malaria Falciparum/transmisión , Plasmodium falciparum/fisiología , Animales , Anopheles/clasificación , Anopheles/genética , Anopheles/fisiología , Camerún/epidemiología , Estudios Transversales , Femenino , Humanos , Mordeduras y Picaduras de Insectos/epidemiología , Mordeduras y Picaduras de Insectos/parasitología , Insectos Vectores/clasificación , Insectos Vectores/genética , Insectos Vectores/fisiología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Control de Mosquitos , Estaciones del Año
10.
Malar J ; 15: 31, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26791422

RESUMEN

BACKGROUND: All suspected cases of malaria should receive a diagnostic test prior to treatment with artemisinin-based combinations based on the new WHO malaria treatment guidelines. This study compared the accuracy and some operational characteristics of 22 different immunochromatographic antigen capture point-of- malaria tests (RDTs) in Cameroon to inform test procurement prior to deployment of artemisinin-based combinations for malaria treatment. METHODS: One hundred human blood samples (50 positive and 50 negative) collected from consenting febrile patients in two health centres at Yaoundé were used for evaluation of the 22 RDTs categorized as "Pf Only" (9) or "Pf + PAN" (13) based on parasite antigen captured [histidine rich protein II (HRP2) or lactate dehydrogenase (pLDH) or aldolase]. RDTs were coded to blind technicians performing the tests. The sensitivity, specificity, and predictive values of the positive and negative tests (PPV and NPV) as well as the likelihood ratios were assessed. The reliability and some operational characteristics were determined as the mean values from two assessors, and the Cohen's kappa statistic was then used to compare agreement. Light microscopy was the referent. RESULTS: Of all RDTs tested, 94.2 % (21/22) had sensitivity values greater than 90% among which 14 (63.6%) were 'Pf + PAN' RDTs. The specificity was generally lower than the sensitivity for all RDTs and poorer for "Pf Only" RDTs. The predictive values and likelihood ratios were better for non-HRP2 analytes for "Pf + PAN" RDTs. The Kappa value for most of the tests obtained was around 67% (95% CI 50-69%), corresponding to a moderate agreement. CONCLUSION: Overall, 94.2% (21/22) of RDTs tested had accuracy within the range recommended by the WHO, while one performed poorly, below acceptable levels. Seven "Pf + PAN" and 3 "Pf Only" RDTs were selected for further assessment based on performance characteristics. Harmonizing RDT test presentation and procedures would prevent mistakes of test performance and interpretation.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Adolescente , Antígenos de Protozoos/análisis , Camerún , Niño , Preescolar , Pruebas Diagnósticas de Rutina/métodos , Femenino , Humanos , Lactante , Malaria/metabolismo , Masculino , Proteínas Protozoarias/análisis , Reproducibilidad de los Resultados
11.
Malar J ; 14: 282, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194648

RESUMEN

BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.


Asunto(s)
Culicidae/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Malaria/epidemiología , Malaria/prevención & control , África del Sur del Sahara/epidemiología , Animales , Preescolar , Femenino , Humanos , India/epidemiología , Lactante , Recién Nacido , Insecticidas/farmacología , Malaria/transmisión , Control de Mosquitos/métodos , Prevalencia
12.
Parasit Vectors ; 7: 262, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24903710

RESUMEN

BACKGROUND: Malaria transmission in Cameroon is mediated by a plethora of vectors that are heterogeneously distributed across the country depending on the biotope. To effectively guide malaria control operations, regular update on the role of local Anopheles species is essential. Therefore, an entomological survey was conducted between August 2010 and May 2011 to evaluate the role of the local anopheline population in malaria transmission in three villages of the Ndop health district in the northwest region of Cameroon where malaria is holoendemic, as a means to acquiring evidence based data for improved vector intervention. METHODS: Mosquitoes were sampled both indoor and outdoor for four consecutive nights in each locality during each month of survey. Sampling was done by the human landing catch method on volunteers. Anopheles species were identified morphologically and their ovaries randomly dissected for parity determination. Infection with Plasmodium falciparum was detected by Circumsporozoite protein ELISA. Members of An. gambiae complex were further identified to molecular level by PCR and RFLP PCR. RESULTS: An. ziemanni was the main malaria vector and whether outdoor or indoor. The man biting rate for the vectors ranged from 6.75 to 8.29 bites per person per night (b/p/n). The entomological inoculation rate for this vector species was 0.0278 infectious bites per person per night (ib/p/n) in Mbapishi, 0.034 ib/p/n in Mbafuh, and 0.063 ib/p/n in Backyit. These were by far greater than that for An. gambiae. No difference was observed in the parity rate of these two vectors. PCR analysis revealed the presence of only An. colluzzi (M- form). CONCLUSIONS: An. ziemanni is an important local malaria vector in Ndop health district. The findings provide useful baseline information on the anopheles species composition, their distribution and role in malaria transmission that would guide the implementation of integrated vector management strategies in the locality.


Asunto(s)
Anopheles/clasificación , Anopheles/parasitología , Insectos Vectores/parasitología , Malaria/transmisión , Distribución Animal , Animales , Biodiversidad , Camerún/epidemiología , Conducta Alimentaria , Humanos , Mordeduras y Picaduras de Insectos , Insectos Vectores/fisiología , Malaria/epidemiología
13.
Malar J ; 12: 225, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23819866

RESUMEN

BACKGROUND: Water quality and anopheline habitat have received increasing attention due to the possibility that challenges during larval life may translate into adult susceptibility to malaria parasite infection and/or insecticide resistance. METHODS: A preliminary study of Anopheles gambiae s.s. larval habitats in the north-west and south-west regions of Cameroon was conducted in order to detect associations between An. gambiae s.s. molecular form and 2La inversion distributions with basic water quality parameters. Water quality was measured by temperature, pH, conductivity, total dissolved solids (TDS) at seven sites in Cameroon and one site in Selinkenyi, Mali. RESULTS: Principal components and correlation analyses indicated a complex relationship between 2La polymorphism, temperature, conductivity and TDS. Cooler water sites at more inland locations yielded more S form larvae with higher 2La inversion polymorphism while warmer water sites yielded more M form larvae with rare observations of the 2La inversion. DISCUSSION: More detailed studies that take into account the population genetics but also multiple life stages, environmental data relative to these life stages and interactions with both humans and the malaria parasite may help us to understand more about how and why this successful mosquito is able to adapt and diverge, and how it can be successfully managed.


Asunto(s)
Anopheles/crecimiento & desarrollo , Ecosistema , Calidad del Agua , Agua/parasitología , Animales , Camerún , Conductividad Eléctrica , Femenino , Humanos , Concentración de Iones de Hidrógeno , Compuestos Inorgánicos/análisis , Larva/crecimiento & desarrollo , Masculino , Compuestos Orgánicos/análisis , Temperatura , Agua/química
14.
Acta Trop ; 124(3): 210-4, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22935317

RESUMEN

Anti-vector intervention remains the most effective way of controlling malaria. Although in Cameroon and elsewhere focus is on the use of long-lasting insecticidal nets and indoor residual spraying, the efficacy of both methods greatly depends on the continuing susceptibility of the vectors to the insecticides used. The emergence and spread of insecticide resistance in the major malaria vectors constitute a huge challenge to control programmes. Consequently, routine monitoring and evaluation of vector resistance status to insecticides are mandatory for early detection of resistance should it arise, and effectively planning future anti-vector interventions especially in areas reputed for routine application in agriculture. The WHO bioassay kit was used to determine the susceptibility status of Anopheles gambiae s.l. populations to seven insecticides belonging to four classes (organochlorine, organophosphate, carbamate and pyrethroids) in Niete, an area of intense rubber cultivation in southern forested Cameroon. Species and molecular forms of An. gambiae s.l. as well as the presence of knock down resistance (kdr) mutations were determined using polymerase chain reaction (PCR) techniques. All Anopheles tested was identified as An. gambiae s.s. and of the M molecular form. Based on WHO classification, while the mosquitoes were fully (100%) susceptible to malathion and bendiocarb, resistance was confirmed to DDT and the pyrethroids, permethrin and lambda-cyhalothrin. The other pyrethroids (deltamethrin and cyfluthrin) showed signs of developing resistance. Resistance to DDT and pyrethroids is indicative of existing cross resistance mechanisms between these insecticides. The increase in knockdown times was greater than twofold that of the reference susceptible strain, suggesting the possible involvement of kdr mutations, also confirmed in this study. The findings highlight the need for constant evaluation, re-evaluation and monitoring of the insecticides for malaria vector control in Cameroon. However, bendiocarb and malathion can be used and may require alternation or combination with insecticides of other classes to better manage the occurrence and spread of resistance in Niete.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Piretrinas/farmacología , Agricultura , Animales , Anopheles/clasificación , Anopheles/genética , Camerún , Entomología/métodos , Femenino , Humanos , Reacción en Cadena de la Polimerasa/métodos , Goma
15.
Parasit Vectors ; 5: 197, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22963986

RESUMEN

BACKGROUND: Development of large scale agro-industries are subject to serious environmental modifications. In malaria endemic areas this would greatly impact on the transmission paradigm. Two cross-sectional entomological surveys to characterize the Anopheles fauna and their entomological inoculation rates were conducted during May 2010 (peak rainy season) and December 2010 (peak dry season) in the intense rubber cultivated area of Niete in southern forested Cameroon. METHODS: Mosquitoes were sampled by night collections on human volunteers, identified morphologically and members of the Anopheles gambiae complex further identified to species and molecular form. Parity status was determined following the dissection of the ovaries. Plasmodium falciparum circumsporozoite antigen indices were estimated after the identification of CS antigen by ELISA and the average entomological inoculation rates determined. RESULTS: A total of 1187 Anopheles was collected, 419 (35.3%) in the rainy season and 768 (64.7%) in the dry season. Species found were the M molecular form of An. gambiae s.s (66.8%), An. ziemanni (28.3%), An. paludis (4.7%), An. smithii (0.2%). An. gambiae M-form was the principal species in the dry (56.2%) and wet (86.2%) seasons. Average overall entomological inoculation rate for the malaria vectors varied between the dry season (1.09 ib/p/n) and the rainy season (2.30 ib/p/n). CONCLUSIONS: Malaria transmission in Niete occurs both in the dry and rainy season with the intensities peaking in the dry season. This is unlike previous studies in other areas of southern forested Cameroon where transmission generally peaks in the rainy season. Environmental modifications due to agro-industrial activities might have influenced vector distribution and the dynamics of malaria transmission in this area. This necessitates the possible implementation of control strategies that are related to the eco-geography of the area.


Asunto(s)
Anopheles/crecimiento & desarrollo , Anopheles/parasitología , Plasmodium falciparum/aislamiento & purificación , Agricultura , Animales , Anopheles/clasificación , Camerún , Ecosistema , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Plasmodium falciparum/química , Dinámica Poblacional , Prevalencia , Proteínas Protozoarias/análisis , Goma , Estaciones del Año
16.
Acta Trop ; 115(1-2): 131-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20206111

RESUMEN

Knowledge of baseline malaria transmission intensity in a given environment is important to guide malaria control interventions. In Cameroon, recent information on malaria transmission intensity is insufficient. Therefore, an entomological study was conducted in four ecologically different sites throughout the country to assess the seasonal patterns in malaria transmission intensity. Anopheles arabiensis was the main vector in six of the nine study sites, while An. gambiae sensu stricto was the most important vector in the other three sites. Clear differences in entomological inoculation rates (EIR) were observed between the study sites, ranging from 0.1 infective bites per person per night in the sahelian zone of the country to 5.5 infective bites per person per night in the forest zone. Based on the observed behaviour of the vectors, insecticide-treated bed nets will be highly effective in controlling malaria. However, in the high transmission areas, additional measures will be needed to reduce the malaria burden to acceptable levels.


Asunto(s)
Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Insectos Vectores , Malaria/epidemiología , Malaria/transmisión , Animales , Camerún/epidemiología , Femenino , Humanos , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Control de Mosquitos/métodos
17.
Malar J ; 8: 75, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19383163

RESUMEN

BACKGROUND: Anopheles gambiae sensu stricto, one of the principal vectors of malaria, has been divided into two subspecific groups, known as the M and S molecular forms. Recent studies suggest that the M form found in Cameroon is genetically distinct from the M form found in Mali and elsewhere in West Africa, suggesting further subdivision within that form. METHODS: Chromosomal, microsatellite and geographic/ecological evidence are synthesized to identify sources of genetic polymorphism among chromosomal and molecular forms of the malaria vector Anopheles gambiae s.s. RESULTS: Cytogenetically the Forest M form is characterized as carrying the standard chromosome arrangement for six major chromosomal inversions, namely 2La, 2Rj, 2Rb, 2Rc, 2Rd, and 2Ru. Bayesian clustering analysis based on molecular form and chromosome inversion polymorphisms as well as microsatellites describe the Forest M form as a distinct population relative to the West African M form (Mopti-M form) and the S form. The Forest-M form was the most highly diverged of the An. gambiae s.s. groups based on microsatellite markers. The prevalence of the Forest M form was highly correlated with precipitation, suggesting that this form prefers much wetter environments than the Mopti-M form. CONCLUSION: Chromosome inversions, microsatellite allele frequencies and habitat preference all indicate that the Forest M form of An. gambiae is genetically distinct from the other recognized forms within the taxon Anopheles gambiae sensu stricto. Since this study covers limited regions of Cameroon, the possibility of gene flow between the Forest-M form and Mopti-M form cannot be rejected. However, association studies of important phenotypes, such as insecticide resistance and refractoriness against malaria parasites, should take into consideration this complex population structure.


Asunto(s)
Anopheles/genética , Inversión Cromosómica/genética , Insectos Vectores/clasificación , Malaria/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético/genética , Animales , Anopheles/clasificación , Teorema de Bayes , Camerún , Cromosomas/genética , Análisis Citogenético , Ecología , Ecosistema , Femenino , Frecuencia de los Genes/genética , Insectos Vectores/genética , Modelos Genéticos , Reacción en Cadena de la Polimerasa , Población/genética , Especificidad de la Especie
18.
Trans R Soc Trop Med Hyg ; 103(11): 1127-38, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19155034

RESUMEN

Insecticides are a key component of vector-based malaria control programmes in Cameroon. As part of ongoing resistance surveillance efforts, Anopheles gambiae s.l. female mosquitoes were exposed to organochlorine (DDT), a carbamate (bendiocarb), an organophosphate (malathion), and three pyrethroids (deltamethrin, lambda-cyhalothrin and permethrin) in WHO bioassay test kits. Results indicated a higher level of resistance (reduced mortality and knockdown effect) to DDT and pyrethroids in populations of A. gambiae s.s. than in A. arabiensis. The West and East African knockdown resistance (kdr) mutations were found in both species but at much higher frequencies in A. gambiae s.s. The West Africa kdr mutant was also more frequent in the A. gambiae S form than in the M form. No resistance to bendiocarb and malathion was found. Carbamate and organophosphorous compounds could thus be used as alternatives in locations in Cameroon where pyrethroid-resistant populations are found.


Asunto(s)
Anopheles/genética , Frecuencia de los Genes/genética , Resistencia a los Insecticidas/genética , Animales , Anopheles/efectos de los fármacos , Camerún , Carbamatos/farmacología , DDT/farmacología , Femenino , Control de Insectos , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/genética
19.
J Med Entomol ; 45(2): 260-6, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18402142

RESUMEN

The spread of insecticide resistance genes in Anopheles gambiae Giles sensu stricto threatens to compromise vector-based malaria control programs. Two mutations at the same locus in the voltage-gated sodium channel gene are known to confer knockdown resistance (kdr) to pyrethroids and DDT. Kdr-e involves a leucine-serine substitution, and it was until recently thought to be restricted to East Africa, whereas kdr-w, which involves a leucine-phenylalanine substitution, is associated with resistance in West Africa. In this study, we analyze the frequency and relationship between the kdr genotypes and resistance to type I and type II pyrethroids and DDT by using WHO test kits in both the Forest-M and S molecular forms of An. gambiae in Cameroon. Both kdr-w and kdr-e polymorphisms were found in sympatric An. gambiae, and in many cases in the same mosquito. Kdr-e and kdr-w were detected in both forms, but they were predominant in the S form. Both kdr-e and kdr-w were closely associated with resistance to DDT and weakly associated with resistance to type II pyrethroids. Kdr-w conferred greater resistance to permethrin than kdr-e. We also describe a modified diagnostic designed to detect both resistant alleles simultaneously.


Asunto(s)
Anopheles/genética , DDT , Insecticidas , Piretrinas , Canales de Sodio/genética , Alelos , Animales , Camerún , Frecuencia de los Genes , Resistencia a los Insecticidas/genética
20.
Trans R Soc Trop Med Hyg ; 102(4): 352-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18295810

RESUMEN

Cross-sectional entomological surveys were carried out during the 2006 dry and rainy seasons in Lagdo, Cameroon to measure the impact of rice cultivation on malaria transmission and to monitor vector susceptibility to insecticides. Adult anopheline mosquitoes were captured on human volunteers and by pyrethrum spray collections. A total of 4740 mosquitoes was collected during the study. Anopheles arabiensis was the major species and the main malaria vector in all study sites, followed by A. funestus. Malaria transmission was high in the non-irrigated zone of Mayo Mbocki, whereas in the irrigated area of Gounougou it was below detection level during the dry season and high during the rainy season. Insecticide susceptibility tests performed on A. gambiae s.l. populations detected resistance to lambdacyhalothrin and to a lower extent to deltamethrin. All survivors were A. arabiensis. None of the surviving mosquitoes carried the kdr mutation, suggesting an alternative resistance mechanism.


Asunto(s)
Agricultura , Malaria Falciparum/transmisión , Oryza , Animales , Anopheles/clasificación , Anopheles/parasitología , Estudios Transversales , Resistencia a Medicamentos , Conducta Alimentaria , Femenino , Humanos , Insectos Vectores/parasitología , Insecticidas , Plasmodium falciparum/aislamiento & purificación , Lluvia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...