Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Brain Sci ; 14(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39335363

RESUMEN

Transcranial magnetic stimulation (TMS) represents a distinctive technique for non-invasive brain stimulation. Recent advancements in image processing have enabled the enhancement of TMS by integrating magnetic resonance imaging (MRI) modalities with TMS via a neuronavigation system. The aim of this study is to assess the efficacy of navigated TMS for cortical mapping in comparison to surgical mapping using direct electrical stimulation (DES). This study involved 30 neurosurgical procedures for tumors located in or adjacent to the precentral gyrus. The DES points were compared with TMS responses based on the original distances of vectorial modules. There was a notable similarity in the points obtained from the two mapping methods. The distances between the geometric centers of TMS and DCS were 4.85 ± 1.89 mm. A strong correlation was identified between these vectorial points (r = 0.901, p < 0.001). The motor threshold in TMS was highest in the motor cortex adjacent to the tumor compared to the normal cortex (p < 0.001). Patients with deficits exhibited excellent accuracy in both methods. In view of this, TMS demonstrated reliable and precise application in brain mapping, which is a promising method for preoperative functional mapping in motor cortex tumor surgery.

2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292973

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the gold-standard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Animales , Ratas , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Oxidopamina , Inflamasomas/metabolismo , Electrodos , Glutamatos , Inflamación/terapia , Citocinas/metabolismo , Sistemas de Transporte de Aminoácidos , Ácido gamma-Aminobutírico
3.
Neurosurgery ; 91(1): 139-145, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550448

RESUMEN

BACKGROUND: Hemidystonia (HD) is characterized by unilateral involuntary torsion movements and fixed postures of the limbs and face. It often develops after deleterious neuroplastic changes secondary to injuries to the brain. This condition usually responds poorly to medical treatment, and deep brain stimulation often yields unsatisfactory results. We propose this study based on encouraging results from case reports of patients with HD treated by ablative procedures in the subthalamic region. OBJECTIVE: To compare the efficacy of stereotactic-guided radiofrequency lesioning of the subthalamic area vs available medical treatment in patients suffering from acquired HD. METHODS: This is an open-label study in patients with secondary HD allocated according to their treatment choice, either surgical or medical treatment; both groups were followed for one year. Patients assigned in the surgical group underwent unilateral campotomy of Forel. The efficacy was assessed using the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, Arm Dystonia Disability Scale, and SF-36 questionnaire scores. RESULTS: Patients in the surgical group experienced significant improvement in the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, and Arm Dystonia Disability Scale (39%, 35%, and 15%, respectively) 1 year after the surgery, with positive reflex in quality-of-life measures, such as bodily pain and role-emotional process. Patients kept on medical treatment did not experience significant changes during the follow-up. No infections were recorded, and no neurological adverse events were associated with either intervention. CONCLUSION: The unilateral stereotaxy-guided ablation of Forel H1 and H2 fields significantly improved in patients with HD compared with optimized clinical treatment.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Estimulación Encefálica Profunda/métodos , Distonía/etiología , Distonía/terapia , Trastornos Distónicos/etiología , Globo Pálido/cirugía , Humanos , Resultado del Tratamiento
4.
Int J Mol Sci, v. 23, 20, 12116, out. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4669

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the goldstandard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.

5.
Parkinsonism Relat Disord ; 83: 1-5, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33385858

RESUMEN

INTRODUCTION: Hereditary spastic paraplegia is a heterogeneous group of genetic disorders characterized by degeneration of the corticospinal tracts, coursing with progressive weakness and spasticity of the lower limbs. To date, there are no effective treatments for progressive deficits or disease-modifying therapy for those patients. We report encouraging results for spastic paraparesis after spinal cord stimulation. METHODS: A 51-year-old woman suffering from progressive weakness and spasticity in lower limbs related to hereditary spastic paraplegia type 4 underwent spinal cord stimulation (SCS) and experienced also significant improvement in motor function. Maximum ballistic voluntary isometric contraction test, continuous passive motion test and gait analysis using a motion-capture system were performed in ON and OFF SCS conditions. Neurophysiologic assessment consisted of obtaining motor evoked potentials in both conditions. RESULTS: Presurgical Spastic Paraplegia Rating Scale (SPRS) score was 26. One month after effective SCS was initiated, SPRS went down to 15. At 12 months follow up, she experienced substantial improvement in motor function and in gait performance, with SPRS scores 23 (OFF) and down to 20 (ON). There was an increased isometric muscle strength (knee extension, OFF: 41 N m; ON: 71 N m), lower knee extension and flexion torque values in continuous passive motion test (decrease in spastic tone) and improvement in gait (for example, step length increase). CONCLUSION: Despite being a case study, our findings suggest innovative lines of research for the treatment of spastic paraplegia.


Asunto(s)
Trastornos Neurológicos de la Marcha/rehabilitación , Actividad Motora , Paraplejía/rehabilitación , Paraplejía Espástica Hereditaria/rehabilitación , Estimulación de la Médula Espinal , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Persona de Mediana Edad , Actividad Motora/fisiología , Paraplejía/complicaciones , Paraplejía/fisiopatología , Índice de Severidad de la Enfermedad , Paraplejía Espástica Hereditaria/complicaciones , Paraplejía Espástica Hereditaria/fisiopatología
6.
Neurosurgery ; 88(2): E158-E169, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33026432

RESUMEN

BACKGROUND: Intractable aggressive behavior (iAB) is a devastating behavioral disorder that may affect psychiatric patients. These patients have reduced quality of life, are more challenging to treat as they impose a high caregiver burden and require specialized care. Neuromodulatory interventions targeting the amygdala, a key hub in the circuitry of aggressive behavior (AB), may provide symptom alleviation. OBJECTIVE: To Report clinical and imaging findings from a case series of iAB patients treated with bilateral amygdala ablation. METHODS: This series included 4 cases (3 males, 19-32 years old) who underwent bilateral amygdala radiofrequency ablation for iAB hallmarked by life-threatening self-injury and social aggression. Pre- and postassessments involved full clinical, psychiatric, and neurosurgical evaluations, including scales quantifying AB, general agitation, quality of life, and magnetic resonance imaging (MRI). RESULTS: Postsurgery assessments revealed decreased aggression and agitation and improved quality of life. AB was correlated with testosterone levels and testosterone/cortisol ratio in males. No clinically significant side effects were observed. Imaging analyses showed preoperative amygdala volumes within normal populational range and confirmed lesion locations. The reductions in aggressive symptoms were accompanied by significant postsurgical volumetric reductions in brain areas classically associated with AB and increases in regions related to somatosensation. The local volumetric reductions are found in areas that in a normal brain show high expression levels of genes related to AB (eg, aminergic transmission) using gene expression data provided by the Allen brain atlas. CONCLUSION: These findings provide new insight into the whole brain neurocircuitry of aggression and suggest a role of altered somatosensation and possible novel neuromodulation targets.


Asunto(s)
Agresión/fisiología , Amígdala del Cerebelo/cirugía , Trastornos Mentales/fisiopatología , Trastornos Mentales/cirugía , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Calidad de Vida , Ablación por Radiofrecuencia/métodos , Radiocirugia/métodos , Adulto Joven
7.
World Neurosurg, v. 155, p. e19-e33, jul. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3911

RESUMEN

Intermittent Explosive Disorder (IED) is a psychiatric disorder characterized by recurrent outbursts of aggressive behaviour. Deep brain stimulation (DBS) in the posteromedial nucleus of the hypothalamus (pHyp) is an alternative therapy for extreme cases and shows promising results. Intraoperative microdialysis can help elucidate the neurobiological mechanism of pHyp-DBS. Objective To evaluate efficacy and safety of pHyp-DBS using eight-contact directional leads in patients with refractory IED (rIED) and the accompanying changes in neurotransmitters. Methods A prospective study in which patients with a diagnosis of rIED were treated with pHyp-DBS for symptom alleviation. Bilateral pHyp-DBS was performed with eight-contact directional electrodes. Follow-up was performed at 3, 6 and 12 months after surgery. Results Four patients (3 men, mean age 27 ± 2.8 yr) were included. All patients were diagnosed with rIED and severe intellectual disability. Two patients had congenital rubella, one has co-diagnosis of infantile autism and the fourth presents with drug-resistant epilepsy. There was a marked increase in the levels of GABA and glycine during intraoperative stimulation. The average improvement in aggressive behaviour in the last follow-up was 6 points (Δ: 50%, p= 0.003) while also documenting an important improvement of the SF-36 in all domains except bodily pain. No adverse events associated with pHyp-DBS were observed. Conclusions This is the first study to show the safety and beneficial effect of directional lead pHyp-DBS in patients with refractory Intermittent Explosive Disorder and to demonstrate the corresponding mechanism of action through increases in GABA and glycine concentration in the pHyp.

8.
Neurobiol Stress ; 12: 100219, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32435668

RESUMEN

Avoidance behavior is a hallmark in pathological anxiety disorders and results in impairment of daily activities. Individual differences in avoidance responses are critical in determining vulnerability or resistance to anxiety disorders. Dopaminergic activation is implicated in the processing of avoidance responses; however, the mechanisms underlying these responses are unknown. In this sense, we used a preclinical model of avoidance behavior to investigate the possibility of an intrinsic differential dopaminergic pattern between good and poor performers. The specific goal was to assess the participation of dopamine (DA) through pharmacological manipulation, and we further evaluated the effects of systemic injections of the dopaminergic receptor type 1 (D1 antagonist - SCH23390) and dopaminergic receptor type 2 (D2 antagonist - sulpiride) antagonists in the good performers. Additionally, we evaluated the effects of intra-amygdala microinjection of a D1 antagonist (SCH23390) and a D2 antagonist (sulpiride) in good performers as well as intra-amygdala microinjection of a D1 agonist (SKF38393) and D2 agonist (quinpirole) in poor performers. Furthermore, we quantified the contents of dopamine and metabolites (3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)) in the amygdala, evaluated the basal levels of tyrosine hydroxylase expression (catecholamine synthesis enzyme) and measured the volume of the substantia nigra, ventral tegmental area and locus coeruleus. Our results showed that it could be possible to convert animals from good to poor performers, and vice versa, by intra-amygdala (basolateral and central nucleus) injections of D1 receptor antagonists in good performers or D2 receptor agonists in poor performers. Additionally, the good performers had lower levels of DOPAC and HVA in the amygdala, an increase in the total volume of the amygdala (AMG), substantia nigra (SN), ventral tegmental area (VTA) and locus coeruleus (LC), and an increase in the number of tyrosine hydroxylase-positive cells in SN, VTA and LC, which positively correlates with the avoidance behavior. Taken together, our data show evidence for a dopaminergic signature of avoidance performers, emphasizing the role of distinct dopaminergic receptors in individual differences in avoidance behavior based on pharmacological, immunohistochemical, neurochemical and volumetric analyses. Our findings provide a better understanding of the role of the dopaminergic system in the execution of avoidance behavior.

9.
Front Neurol ; 11: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116998

RESUMEN

Background: Pain is highly prevalent in Parkinson's disease and is associated with significant reduction in health-related quality of life. Subthalamic deep brain stimulation can produce significant pain relief in a subset of patients after surgery. However, the mechanism by which deep brain stimulation modulates sensory function in Parkinson's disease remains uncertain. Objective: To describe the motor and pain outcomes of deep brain stimulation applied to a series of patients with Parkinson's disease and to determine whether the structural connectivity between the volume of tissue activated and different regions of the brain was associated with the changes of these outcomes after surgery. Methods: Data from a long-term prospective cohort of 32 Parkinson's disease patients with subthalamic stimulation were combined with available human connectome to identify connections consistently associated with clinical improvement (Unified Parkinson Disease Rating Scale), pain intensity, and experimental cold pain threshold after surgery. Results: The connectivity between the volume of tissue activated and a distributed network of sensory brain regions (prefrontal, insular and cingulate cortex, and postcentral gyrus) was inversely correlated with pain intensity improvement and reduced sensitivity to cold pain after surgery (p < 0.01). The connectivity strength with the supplementary motor area positively correlated with motor and pain threshold improvement (p < 0.05). Conclusions: These data suggest that the pattern of the connectivity between the region stimulated and specific brain cortical area might be responsible, in part, for the successful control of motor and pain symptoms by subthalamic deep brain stimulation in Parkinson's disease.

10.
Cell Mol Neurobiol ; 40(6): 939-954, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31939008

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.


Asunto(s)
Astrocitos/patología , Estimulación Encefálica Profunda , Enfermedad de Parkinson/patología , Núcleo Subtalámico/patología , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Globo Pálido/patología , Hiperplasia , Inflamación/patología , Masculino , Ratones , Actividad Motora , FN-kappa B/metabolismo , Ratas Wistar , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología
11.
Front Neurol ; 11: 598851, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414759

RESUMEN

Periodontal disease (PD) is an infectious-inflammatory oral disease that is highly prevalent among adolescence and adulthood and can lead to chronic orofacial pain and be associated with anxiety, stress and depression. This study aimed to identify anxiety-like behaviors in the ligature-induced murine preclinical model of PD in different phases of the disease (i.e., acute vs. chronic). Also, we investigated orofacial mechanical allodynia thresholds and superficial cortical plasticity along the orofacial motor cortex in both disease phases. To this aim, 25 male Wistar rats were randomly allocated in acute (14 days) or chronic (28 days) ligature-induced-PD groups and further divided into active-PD or sham-PD. Anxiety-like behavior was evaluated using the elevated plus maze, mechanical allodynia assessed using the von Frey filaments test and superficial motor cortex mapping was performed with electrical transdural stimulation. We observed increased anxiety-like behavior in active-PD animals in the acute phase, characterized by decreased number of entries into the open arm extremities [t (1,7) = 2.42, p = 0.04], and reduced time spent in the open arms [t (1,7) = 3.56, p = 0.01] and in the open arm extremities [t (1,7) = 2.75, p = 0.03]. There was also a reduction in the mechanical allodynia threshold in all active-PD animals [Acute: t (1,7) = 8.81, p < 0.001; Chronic: t (1,6) = 60.0, p < 0.001], that was positively correlated with anxiety-like behaviors in the acute group. No differences were observed in motor cortex mapping. Thus, our findings show the presence of anxiety-like behaviors in the acute phase of PD making this a suitable model to study the impact of anxiety in treatment response and treatment efficacy.

12.
Front Neurol ; 10: 905, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507514

RESUMEN

Spinal cord stimulation (SCS) has been used for the treatment of chronic pain for nearly five decades. With a high degree of efficacy and a low incidence of adverse events, it is now considered to be a suitable therapeutic alternative in most guidelines. Experimental studies suggest that SCS may also be used as a therapy for motor and gait dysfunction in parkinsonian states. The most common and disabling gait dysfunction in patients with Parkinson's disease (PD) is freezing of gait (FoG). We review the evolution of SCS for gait disorders from bench to bedside and discuss potential mechanisms of action, neural substrates, and clinical outcomes.

13.
Neuropsychiatr Dis Treat ; 15: 1061-1075, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114210

RESUMEN

Tourette's syndrome (TS) is a neurodevelopmental disorder that comprises vocal and motor tics associated with a high frequency of psychiatric comorbidities, which has an important impact on quality of life. The onset is mainly in childhood and the symptoms can either fade away or require pharmacological therapies associated with cognitive-behavior therapies. In rare cases, patients experience severe and disabling symptoms refractory to conventional treatments. In these cases, deep brain stimulation (DBS) can be considered as an interesting and effective option for symptomatic control. DBS has been studied in numerous trials as a therapy for movement disorders, and currently positive data supports that DBS is partially effective in reducing the motor and non-motor symptoms of TS. The average response, mostly from case series and prospective cohorts and only a few controlled studies, is around 40% improvement on tic severity scales. The ventromedial thalamus has been the preferred target, but more recently the globus pallidus internus has also gained some notoriety. The mechanism by which DBS is effective on tics and other symptoms in TS is not yet understood. As refractory TS is not common, even reference centers have difficulties in performing large controlled trials. However, studies that reproduce the current results in larger and multicenter randomized controlled trials to improve our knowledge so as to support the best target and stimulation settings are still lacking. This article will discuss the selection of the candidates, DBS targets and mechanisms on TS, and clinical evidence to date reviewing current literature about the use of DBS in the treatment of TS.

14.
Exp Neurol ; 318: 12-21, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31028827

RESUMEN

Pain is a common nonmotor symptom of Parkinson's disease (PD) that remains neglected and misunderstood. Elucidating the nondopaminergic circuitry may be key to better understanding PD and improving current treatments. We investigated the role of monoamines in nociceptive behavior and descending analgesic circuitry in a rat 6-hydroxydopamine (6-OHDA)-induced PD model and explored the resulting motor dysfunctions and inflammatory responses. Rats pretreated with noradrenaline and serotonin reuptake inhibitors were given unilateral striatal 6-OHDA injections and evaluated for mechanical hyperalgesia and motor impairments. Through immunohistochemistry, the number and activation of neurons, and the staining for astrocytes, microglia and enkephalin were evaluated in specific brain structures and the dorsal horn of the spinal cord. The PD model induced bilateral mechanical hyperalgesia that was prevented by reuptake inhibitors in the paw contralateral to the lesion. Reuptake inhibitors also prevented postural immobility and asymmetric rotational behavior in PD rats without interfering with dopaminergic neuron loss or glial activation in the substantia nigra. However, the inhibitors changed the periaqueductal gray circuitry, protected against neuronal impairment in the locus coeruleus and nucleus raphe magnus, and normalized spinal enkephalin and glial staining in lesioned rats. These data indicate that the preservation of noradrenergic and serotonergic systems regulates motor responses and nociceptive circuitry during PD not by interfering directly with nigral lesions but by modulating the opioid system and glial response in the spinal cord. Taken together, these results suggest that nondopaminergic circuitry is essential to the motor and nonmotor symptoms of PD and must be further investigated.


Asunto(s)
Vías Nerviosas/metabolismo , Norepinefrina/metabolismo , Dolor/metabolismo , Enfermedad de Parkinson/metabolismo , Serotonina/metabolismo , Animales , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/patología , Vías Nerviosas/patología , Dolor/etiología , Dolor/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Ratas
15.
Surg J (N Y) ; 5(1): e8-e13, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30838335

RESUMEN

Introduction Surgical treatment of brain tumors in eloquent areas has always been considered a major challenge because removal-related cortical damage can cause serious functional impairment. However, few studies have investigated the association between small craniotomies and the higher risk of incidence of motor deficits and prolonged recovery time. Here, we analyzed neurologic deficits and the prognostic variables after surgery guided by navigation for motor cortex tumors under general anesthesia. Methods This was a prospective study that included 47 patients with tumors in the precentral gyrus. All surgeries were performed with neuronavigation and cortical mapping, with direct electrical stimulation of the motor cortex. We evaluated the prognostic evolution of patients with pre- and postoperative Karnofsky Performance Scale using the Eastern Cooperative Oncology Group scale. Results Complete resection was verified in all 18 cases of metastasis, 13 patients with glioblastoma multiforme, and 5 patients with low-grade gliomas. An analysis of the motor deficits revealed that 11 patients experienced worsening of the deficit on the first day after surgery. Only four patients developed new deficits in the immediate postoperative period, and these improved after 3 weeks. After 3 months, only two patients had deficits that were worse those experienced prior to surgery; both patients had glioblastoma multiforme. Conclusion In our series, motor deficits prior to surgery were the most important factors associated with persistent postoperative deficits. Small craniotomy with navigation associated with intraoperative brain mapping allowed a safe resection and motor preservation in patients with motor cortex brain tumor.

16.
Behav Brain Funct ; 15(1): 5, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909927

RESUMEN

Motor cortex stimulation (MCS) is an effective therapy for refractory neuropathic pain. MCS increases the nociceptive threshold in healthy rats via endogenous opioids, inhibiting thalamic nuclei and activating the periaqueductal gray. It remains unclear how the motor cortex induces top-down modulation of pain in the absence of persistent pain. Here, we investigated the main nuclei involved in the descending analgesic pathways and the spinal nociceptive neurons in rats that underwent one session of MCS and were evaluated with the paw pressure nociceptive test. The pattern of neuronal activation in the dorsal raphe nucleus (DRN), nucleus raphe magnus (NRM), locus coeruleus (LC), and dorsal horn of the spinal cord (DHSC) was assessed by immunoreactivity (IR) for Egr-1 (a marker of activated neuronal nuclei). IR for serotonin (5HT) in the DRN and NRM, tyrosine hydroxylase (TH) in the LC, and substance P (SP) and enkephalin (ENK) in the DHSC was also evaluated. MCS increased the nociceptive threshold of the animals; this increase was accompanied by activation of the NRM, while DRN activation was unchanged. However, cortical stimulation induced an increase in 5HT-IR in both serotonergic nuclei. MCS did not change the activation pattern or TH-IR in the LC, and it inhibited neuronal activation in the DHSC without altering SP or ENK-IR. Taken together, our results suggest that MCS induces the activation of serotonergic nuclei as well as the inhibition of spinal neurons, and such effects may contribute to the elevation of the nociceptive threshold in healthy rats. These results allow a better understanding of the circuitry involved in the antinociceptive top-down effect induced by MCS under basal conditions, reinforcing the role of primary motor cortex in pain control.


Asunto(s)
Analgésicos/farmacología , Corteza Motora/fisiología , Umbral del Dolor/efectos de los fármacos , Dolor/fisiopatología , Animales , Hiperalgesia/metabolismo , Masculino , Neuralgia/terapia , Neuronas/efectos de los fármacos , Nociceptores/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Columna Vertebral/efectos de los fármacos
17.
Neurosurgery ; 85(1): 11-30, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690521

RESUMEN

Aggressiveness has a high prevalence in psychiatric patients and is a major health problem. Two brain areas involved in the neural network of aggressive behavior are the amygdala and the hypothalamus. While pharmacological treatments are effective in most patients, some do not properly respond to conventional therapies and are considered medically refractory. In this population, surgical procedures (ie, stereotactic lesions and deep brain stimulation) have been performed in an attempt to improve symptomatology and quality of life. Clinical results obtained after surgery are difficult to interpret, and the mechanisms responsible for postoperative reductions in aggressive behavior are unknown. We review the rationale and neurobiological characteristics that may help to explain why functional neurosurgery has been proposed to control aggressive behavior.


Asunto(s)
Agresión/fisiología , Amígdala del Cerebelo/fisiopatología , Hipotálamo/fisiopatología , Amígdala del Cerebelo/cirugía , Humanos , Hipotálamo/cirugía , Procedimientos Neuroquirúrgicos/métodos
18.
J Mot Behav ; 51(2): 212-221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29683777

RESUMEN

This study aimed to evaluate the relationship between posturography, clinical balance, and executive function tests in Parkinson´s disease (PD). Seventy-one people participated in the study. Static posturography evaluated the center of pressure fluctuations in quiet standing and dynamic posturography assessed sit-to-stand, tandem walk, and step over an obstacle. Functional balance was evaluated by Berg Balance Scale, MiniBESTest, and Timed Up and Go test. Executive function was assessed by Trail Making Test (TMT) and semantic verbal fluency test. Step over obstacle measures (percentage of body weight transfer and movement time) were moderately correlated to Timed Up and Go, part B of TMT and semantic verbal fluency (r > 0.40; p < 0.05 in all relationships). Stepping over an obstacle assesses the responses to internal perturbations. Participants with shorter movement times and higher percentage of body weight transfer (higher lift up index) on this task were also faster in Timed Up and Go, part B of TMT, and semantic verbal fluency. All these tasks require executive function (problem solving, sequencing, shifting attention), which is affected by PD and contribute to postural assessment.


Asunto(s)
Postura/fisiología , Anciano , Atención , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Equilibrio Postural/fisiología , Estudios de Tiempo y Movimiento , Conducta Verbal , Caminata
19.
Mol Psychiatry ; 24(2): 218-240, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29743581

RESUMEN

For more than half a century, stereotactic neurosurgical procedures have been available to treat patients with severe, debilitating symptoms of obsessive-compulsive disorder (OCD) that have proven refractory to extensive, appropriate pharmacological, and psychological treatment. Although reliable predictors of outcome remain elusive, the establishment of narrower selection criteria for neurosurgical candidacy, together with a better understanding of the functional neuroanatomy implicated in OCD, has resulted in improved clinical efficacy for an array of ablative and non-ablative intervention techniques targeting the cingulum, internal capsule, and other limbic regions. It was against this backdrop that gamma knife capsulotomy (GKC) for OCD was developed. In this paper, we review the history of this stereotactic radiosurgical procedure, from its inception to recent advances. We perform a systematic review of the existing literature and also provide a narrative account of the evolution of the procedure, detailing how the procedure has changed over time, and has been shaped by forces of evidence and innovation. As the procedure has evolved and adverse events have decreased considerably, favorable response rates have remained attainable for approximately one-half to two-thirds of individuals treated at experienced centers. A reduction in obsessive-compulsive symptom severity may result not only from direct modulation of OCD neural pathways but also from enhanced efficacy of pharmacological and psychological therapies working in a synergistic fashion with GKC. Possible complications include frontal lobe edema and even the rare formation of delayed radionecrotic cysts. These adverse events have become much less common with new radiation dose and targeting strategies. Detailed neuropsychological assessments from recent studies suggest that cognitive function is not impaired, and in some domains may even improve following treatment. We conclude this review with discussions covering topics essential for further progress of this therapy, including suggestions for future trial design given the unique features of GKC therapy, considerations for optimizing stereotactic targeting and dose planning using biophysical models, and the use of advanced imaging techniques to understand circuitry and predict response. GKC, and in particular its modern variant, gamma ventral capsulotomy, continues to be a reliable treatment option for selected cases of otherwise highly refractory OCD.


Asunto(s)
Cápsula Interna/cirugía , Trastorno Obsesivo Compulsivo/cirugía , Trastorno Obsesivo Compulsivo/terapia , Lóbulo Frontal/fisiopatología , Humanos , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Procedimientos Neuroquirúrgicos/métodos , Trastorno Obsesivo Compulsivo/fisiopatología , Radiocirugia/métodos , Resultado del Tratamiento
20.
World Neurosurg ; 122: e690-e699, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30394358

RESUMEN

BACKGROUND: With application of 3T magnetic resonance imaging (MRI) to functional neurosurgery procedures and given the inherent requirement of millimetric precision, the need to develop a method for correction of geometric image distortion emerged. The aim of this study was to demonstrate clinical safety and practical viability of a correction protocol in patients scheduled to undergo stereotactic procedures using 3T MRI. METHODS: This prospective study comprised 20 patients scheduled to undergo computed tomography (CT) stereotactic functional procedures or encephalic brain lesion biopsies. The CT images were references for MRI geometric accuracy calculations. For each scan, 2 images were obtained: normal and reversed images. Eight distinct points on CT and MRI were selected summing 152 points that were based on a power analysis calculation value >0.999. One patient was excluded because of the inability to find reliable common landmark points on CT and MRI. RESULTS: The distortion range was 0-5.6 mm and increased proportionally with stereotactic isocenter distance, meaning the distortion was greater in the periphery. After correction, the minimum and maximum distortion found was 0 mm and 3.5 mm, respectively. There was no significant difference between CT and MRI corrected x-coordinates (P > 0.05). CONCLUSIONS: The proposed method can satisfactorily correct geometric distortions in clinical 3T MRI studies. Clinical use of the technique can be practical and efficient after software automation of the process. The method can be applied to all spin-echo MRI sequences.


Asunto(s)
Imagenología Tridimensional/normas , Imagen por Resonancia Magnética/normas , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Técnicas Estereotáxicas/normas , Tomografía Computarizada por Rayos X/normas , Adolescente , Adulto , Anciano , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA