Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Mol Oncol ; 13(2): 290-306, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30422399

RESUMEN

In malignant transformation, cellular stress-response pathways are dynamically mobilized to counterbalance oncogenic activity, keeping cancer cells viable. Therapeutic disruption of this vulnerable homeostasis might change the outcome of many human cancers, particularly those for which no effective therapy is available. Here, we report the use of fibroblast growth factor 2 (FGF2) to demonstrate that further mitogenic activation disrupts cellular homeostasis and strongly sensitizes cancer cells to stress-targeted therapeutic inhibitors. We show that FGF2 enhanced replication and proteotoxic stresses in a K-Ras-driven murine cancer cell model, and combinations of FGF2 and proteasome or DNA damage response-checkpoint inhibitors triggered cell death. CRISPR/Cas9-mediated K-Ras depletion suppressed the malignant phenotype and prevented these synergic toxicities in these murine cells. Moreover, in a panel of human Ewing's sarcoma family tumor cells, sublethal concentrations of bortezomib (proteasome inhibitor) or VE-821 (ATR inhibitor) induced cell death when combined with FGF2. Sustained MAPK-ERK1/2 overactivation induced by FGF2 appears to underlie these synthetic lethalities, as late pharmacological inhibition of this pathway restored cell homeostasis and prevented these described synergies. Our results highlight how mitotic signaling pathways which are frequently overridden in malignant transformation might be exploited to disrupt the robustness of cancer cells, ultimately sensitizing them to stress-targeted therapies. This approach provides a new therapeutic rationale for human cancers, with important implications for tumors still lacking effective treatment, and for those that frequently relapse after treatment with available therapies.


Asunto(s)
Antineoplásicos/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Estrés Fisiológico , Animales , Bortezomib/farmacología , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
J Pharm Pharmacol ; 67(8): 1100-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25787872

RESUMEN

OBJECTIVES: The aim of this study was to investigate the cytotoxic and antitumour effects of the essential oil from the leaves of Mentha x villosa (EOMV) and its main component (rotundifolone). METHODS: In-vitro cytotoxic activity of the EOMV and rotundifolone was determined on cultured tumour cells. In-vivo antitumour activity of the EOMV was assessed in sarcoma 180-bearing mice. KEY FINDINGS: The EOMV displayed cytotoxicity against human tumour cell lines, showing IC50 values in the range of 0.57-1.02 µg/ml in the HCT-116 and SF-295 cell lines, respectively. Rotundifolone showed weak cytotoxicity against HCT-116, SF-295 and OVCAR-8 cell lines (IC50 > 25.00 µg/ml). Tumour growth inhibition rates were 29.4-40.5% and 25.0-45.2% for the EOMV treatment by intraperitoneal (50-100 mg/kg/day) and oral (100-200 mg/kg/day) administration, respectively. The EOMV did not significantly affect body mass and macroscopy of the organs. CONCLUSIONS: The EOMV possesses significant antitumour activity with low systemic toxicity, possibly due to the synergistic action of its minor constituents.


Asunto(s)
Antineoplásicos/farmacología , Mentha , Monoterpenos/farmacología , Aceites Volátiles/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Femenino , Humanos , Ratones , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA