Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1347318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500881

RESUMEN

Immune checkpoint pathways, i.e., coinhibitory pathways expressed as feedback following immune activation, are crucial for controlling an excessive immune response. Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) are the central classical checkpoint inhibitory (CPI) molecules used for the control of neoplasms and some infectious diseases, including some fungal infections. As the immunosuppression of severe paracoccidioidomycosis (PCM), a chronic granulomatous fungal disease, was shown to be associated with the expression of coinhibitory molecules, we hypothesized that the inhibition of CTLA-4 and PD-1 could have a beneficial effect on pulmonary PCM. To this end, C57BL/6 mice were infected with Paracoccidioides brasiliensis yeasts and treated with monoclonal antibodies (mAbs) α-CTLA-4, α-PD-1, control IgG, or PBS. We verified that blockade of CTLA-4 and PD-1 reduced the fungal load in the lungs and fungal dissemination to the liver and spleen and decreased the size of pulmonary lesions, resulting in increased survival of mice. Compared with PBS-treated infected mice, significantly increased levels of many pro- and anti-inflammatory cytokines were observed in the lungs of α-CTLA-4-treated mice, but a drastic reduction in the liver was observed following PD-1 blockade. In the lungs of α-CPI and IgG-treated mice, there were no changes in the frequency of inflammatory leukocytes, but a significant reduction in the total number of these cells was observed. Compared with PBS-treated controls, α-CPI- and IgG-treated mice exhibited reduced pulmonary infiltration of several myeloid cell subpopulations and decreased expression of costimulatory molecules. In addition, a decreased number of CD4+ and CD8+ T cells but sustained numbers of Th1, Th2, and Th17 T cells were detected. An expressive reduction in several Treg subpopulations and their maturation and suppressive molecules, in addition to reduced numbers of Treg, TCD4+, and TCD8+ cells expressing costimulatory and coinhibitory molecules of immunity, were also detected. The novel cellular and humoral profiles established in the lungs of α-CTLA-4 and α-PD-1-treated mice but not in control IgG-treated mice were more efficient at controlling fungal growth and dissemination without causing increased tissue pathology due to excessive inflammation. This is the first study demonstrating the efficacy of CPI blockade in the treatment of pulmonary PCM, and further studies combining the use of immunotherapy with antifungal drugs are encouraged.


Asunto(s)
Paracoccidioidomicosis , Ratones , Animales , Antígeno CTLA-4 , Receptor de Muerte Celular Programada 1 , Ratones Endogámicos C57BL , Gravedad del Paciente , Inmunoglobulina G
2.
Front Immunol ; 15: 1282754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444851

RESUMEN

Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.


Asunto(s)
Dengue , Vacunas , Virosis , Humanos , Vacunología , Vacunación , Dengue/prevención & control
3.
J Med Virol ; 95(10): e29042, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37885152

RESUMEN

Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Animales , Estados Unidos , Rabia/epidemiología , Vacunación , Europa (Continente) , Resultado del Tratamiento , Profilaxis Posexposición/métodos
4.
Life (Basel) ; 13(9)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37763328

RESUMEN

BACKGROUND: COVID-19 led to the suspension academic activities worldwide, affecting millions of students and staff. METHODS: In this study, we evaluated the presence of IgM and IgG anti-SARS-CoV-2 antibodies in an academic population during the return to classes after a one-year suspension. The study took place over five months at a Brazilian university and included 942 participants. RESULTS: We found that most participants had reactive IgG and non-reactive IgM. All received at least one dose, and 940 received two or more doses, of different COVID-19 vaccines. We obtained a higher average of memory antibodies (IgG) in participants who received the CoronaVac/ChAdOx1 combination. IgG was consistently distributed for each vaccine group, but individuals who completed the vaccination schedule had higher levels. There were no differences between antibodies and gender, presence of symptoms, and previous COVID-19 infection, but older participants (>53 years) and contacts of infected individuals had higher IgM levels. CONCLUSION: This study makes significant contributions to the assessment of antibodies in the academic environment, allowing us to infer that most participants had memory immunity and low indications of recent infection when returning to face-to-face classes, as well as demonstrating the need to monitor immunity and update vaccinations.

5.
NPJ Aging ; 9(1): 21, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620330

RESUMEN

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ß peptide, ß catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.

6.
Front Immunol ; 14: 1243516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638052

RESUMEN

Dengue virus (DENV) infection manifests as a febrile illness with three distinct phases: early acute, late acute, and convalescent. Dengue can result in clinical manifestations with different degrees of severity, dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Interferons (IFNs) are antiviral cytokines central to the anti-DENV immune response. Notably, the distinct global signature of type I, II, and III interferon-regulated genes (the interferome) remains uncharacterized in dengue patients to date. Therefore, we performed an in-depth cross-study for the integrative analysis of transcriptome data related to DENV infection. Our systems biology analysis shows that the anti-dengue immune response is characterized by the modulation of numerous interferon-regulated genes (IRGs) enriching, for instance, cytokine-mediated signaling (e.g., type I and II IFNs) and chemotaxis, which is then followed by a transcriptional wave of genes associated with cell cycle, also regulated by the IFN cascade. The adjunct analysis of disease stratification potential, followed by a transcriptional meta-analysis of the interferome, indicated genes such as IFI27, ISG15, and CYBRD1 as potential suitable biomarkers of disease severity. Thus, this study characterizes the landscape of the interferome signature in DENV infection, indicating that interferome dynamics are a crucial and central part of the anti-dengue immune response.


Asunto(s)
Interferones , Biología de Sistemas , Humanos , Interferones/genética , Citocinas/genética , Antivirales , Ciclo Celular
7.
Front Public Health ; 11: 1095162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304100

RESUMEN

The historical and social vulnerability of quilombola communities in Brazil can make them especially fragile in the face of COVID-19, considering that several individuals have precarious health systems and inadequate access to water. This work aimed to characterize the frequency of SARS-COV-2 infections and the presence of IgM and IgG SARS-CoV-2 antibodies in quilombola populations and their relationship with the presence of risk factors or preexisting chronic diseases in the quilombola communities. We analyzed the sociodemographic and clinical characteristics, serological status, comorbidities, and symptoms of 1,994 individuals (478 males and 1,536 females) from 18 Brazilian municipalities in the State of Sergipe of quilombola communities, which were evaluated at different epidemiological weeks, starting at the 32nd (August 6th) and ending at the 40th (October 3rd) epidemiological week. More than 70% of studied families live in rural areas and they have an extreme poverty social status. Although we found a higher number of SARS-COV-2 infections in quilombola communities than in the local population, their SARS-CoV-2 reactivity and IgM and IgG positivity varied across the communities investigated. Arterial hypertension was the most risk factor, being found in 27.8% of the individuals (9.5% in stage 1, 10.8% in stage 2, and 7.5% in stage 3). The most common COVID-19 symptoms and comorbidities were headache, runny nose, flu, and dyslipidemia. However, most individuals were asymptomatic (79.9%). Our data indicate that mass testing must be incorporated into public policy to improve the health care system available to quilombola populations during a future pandemic or epidemic.


Asunto(s)
COVID-19 , Femenino , Masculino , Humanos , COVID-19/epidemiología , Brasil/epidemiología , SARS-CoV-2 , Pandemias , Inmunoglobulina G , Inmunoglobulina M
9.
J Med Virol ; 95(2): e28450, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36597912

RESUMEN

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Asesinas Naturales , Ciclo Celular
10.
Heliyon ; 8(11): e11368, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36349284

RESUMEN

Brazil experienced one of the most prolonged periods of school closures, and reopening could have exposed students to high rates of SARS-CoV-2 infection. However, the infection status of students and school workers at the time of the reopening of schools located in Brazilian cities is unknown. Here we evaluated viral carriage by RT-PCR and seroprevalence of anti-SARS-CoV-2 antibodies (IgM and IgG) by immunochromatography in 2259 individuals (1139 students and 1120 school workers) from 28 schools in 28 Brazilian cities. We collected the samples within 30 days after public schools reopened and before the start of vaccination campaigns. Most students (n = 421) and school workers (n = 446) had active (qRT-PCR + IgM- IgG- or qRT-PCR + IgM + IgG-/+) SARS-CoV-2 infection. Regression analysis indicated a strong association between the infection status of students and school workers. Furthermore, while 45% (n = 515) of the students and 37% (n = 415) of the school workers were neither antigen nor antibody positive in laboratory tests, 16% of the participants (169 students and 193 school workers) were oligosymptomatic, including those reinfected. These individuals presented mild symptoms such as headache, sore throat, and cough. Notably, most of the individuals were asymptomatic (83.9%). These results indicate that many SARS-CoV-2 infections in Brazilian cities during school reopening were asymptomatic. Thus, our study highlights the need to promote a coordinated public health effort to guarantee a safe educational environment while avoiding exacerbating pre-existent social inequalities in Brazil, reducing social, mental, and economic losses for students, school workers, and their families.

11.
Cells ; 11(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269470

RESUMEN

Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Asunto(s)
COVID-19 , Linfohistiocitosis Hemofagocítica , Inteligencia Artificial , COVID-19/complicaciones , COVID-19/genética , Niño , Humanos , Linfohistiocitosis Hemofagocítica/complicaciones , Activación Neutrófila , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica
12.
Nat Commun ; 13(1): 1220, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264564

RESUMEN

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Asunto(s)
Autoanticuerpos/inmunología , COVID-19/inmunología , Receptores Acoplados a Proteínas G/inmunología , Sistema Renina-Angiotensina/inmunología , Autoanticuerpos/sangre , Autoinmunidad , Biomarcadores/sangre , COVID-19/sangre , COVID-19/clasificación , Estudios Transversales , Femenino , Humanos , Aprendizaje Automático , Masculino , Análisis Multivariante , Receptor de Angiotensina Tipo 1/inmunología , Receptores CXCR3/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
13.
J Med Virol ; 94(4): 1336-1349, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34845731

RESUMEN

The entire world has been suffering from the coronavirus disease 2019 (COVID-19) pandemic since March 11, 2020. More than a year later, the COVID-19 vaccination brought hope to control this viral pandemic. Here, we review the unknowns of the COVID-19 vaccination, such as its longevity, asymptomatic spread, long-term side effects, and its efficacy on immunocompromised patients. In addition, we discuss challenges associated with the COVID-19 vaccination, such as the global access and distribution of vaccine doses, adherence to hygiene guidelines after vaccination, the emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, and vaccine resistance. Despite all these challenges and the fact that the end of the COVID-19 pandemic is still unclear, vaccines have brought great hope for the world, with several reports indicating a significant decline in the risk of COVID19-related infection and hospitalizations.


Asunto(s)
COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunación , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/provisión & distribución , Salud Global , Humanos , Huésped Inmunocomprometido , Mutación , SARS-CoV-2/genética , Vacunación/efectos adversos , Vacunación/psicología , Vacilación a la Vacunación , Eficacia de las Vacunas
14.
Sci Rep ; 11(1): 20281, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645905

RESUMEN

Fungal infections represent a major global health problem affecting over a billion people that kills more than 1.5 million annually. In this study, we employed an integrative approach to reveal the landscape of the human immune responses to Candida spp. through meta-analysis of microarray, bulk, and single-cell RNA sequencing (scRNA-seq) data for the blood transcriptome. We identified across these different studies a consistent interconnected network interplay of signaling molecules involved in both Toll-like receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune responses. scRNA-seq data confirmed that genes commonly identified by the three transcriptomic methods show cell type-specific expression patterns in various innate and adaptive immune cells. These findings shed new light on the anti-Candida immune response, providing putative molecular pathways for therapeutic intervention.


Asunto(s)
Candida albicans/inmunología , Candida glabrata/inmunología , Candida parapsilosis/inmunología , Candidiasis/inmunología , Candidiasis/microbiología , Transducción de Señal/inmunología , Antivirales/farmacología , Biología Computacional/métodos , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Humanos , Inmunidad , Inmunidad Innata , Interferones/metabolismo , RNA-Seq , Transcripción Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...