Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 114: 103574, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37209634

RESUMEN

The global average temperature will increase by up to 5.7 °C, under high greenhouse gas emissions, consequently increasing the frequency of heatwaves, according to recent IPCC forecasts. These especially impacts ectotherms, such as insects, which are the most susceptible animals to changes in environmental temperature, affecting their physiology and reproduction. Thus, we investigated the effects of a 96-h exposure to constant temperatures (CT: 27, 30.5, 34, 39, 41, or 43 °C) and fluctuating temperatures (FT: 27/34 °C, 12/12 h) on the survival, metabolic rate, and oviposition of the female cricket Gryllus (Gryllus) assimilis (Orthoptera: Gryllidae). Mortality, body mass and water content of females and males were quantified and compared. It was found that CT27, CT34 and FT27/34 do not cause mortality in females of G. (G.) assimilis. CT30.5 (average temperature between 27 and 34), despite causing mortality of 5.0 ± 3.5%, do not differ from CT27, CT34 or FT27/34. CT39 causes a mortality of 8.3 ± 5.5%. Estimated lethal temperature for 50% of the population of females (LT50Temp) is 40 °C, and 43 °C promotes 100% mortality in 96 h. Comparing mortality between sexes, females present higher LT50Temp and thermotolerance than males. In addition, FT27/34 and CT34 do not differ in the metabolic rate, but both have higher values than CT27. CT34 strongly reduces oviposition in females, however FT27/34 does not. We suggest that CT34 reduces oviposition in females in two ways: by affecting the endocrine system related to egg production, or by causing behavioral egg retention, as a strategy to survive thermal stress. Moreover, females had a higher wet body mass and present a lower average weight loss than males. In conclusion, despite females present a higher mortality at temperatures above 39 °C, they are more thermotolerant than males. Furthermore, CT34 is detrimental to the oviposition of G. (G.) assimilis.


Asunto(s)
Gryllidae , Termotolerancia , Masculino , Animales , Femenino , Temperatura , Gryllidae/fisiología , Oviposición , Reproducción
2.
J Therm Biol ; 105: 103145, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35393061

RESUMEN

Ectotherms, such as insects, are susceptible to climate changes because their body temperature is not physiologically regulated. Forecasts indicate a worldwide temperature rise of 1.4-6 °C by 2100, and an increase in heatwave frequency is expected. This study investigated the effects of constant temperatures (CT; 27, 34, 39, 40 and 41 °C) and fluctuating temperature (FT; 27/34 °C: 12/12 h) on the survival, metabolic rate, locomotor activity, gas exchange pattern, heat loss and water content of the male Jamaican field cricket, Gryllus assimilis (Fabricius, 1775) (Orthoptera: Gryllidae). It was found that 39 °C was the estimated lethal temperature for 50% of the population and that 41 °C was considered the thermal limit, causing 100% mortality in 96 h. Furthermore, FT caused slightly higher mortality (8.9 ± 3.8%) than CT27 (0%) and CT34 (1.43 ± 1.43%). FT caused a greater increase in the metabolic rate and locomotor activity than CT27. It was found that G. assimilis males had a continuous gas exchange as a standard at CT27; however, CT34 changed the gas exchange pattern from continuous to cyclic in 27% of crickets. FT decreased heat loss in crickets more than CT34; however, no significant differences were found in locomotor activity and metabolic rate. In addition, no significant differences between CT27, CT34 and FT were observed in terms of water content, thus suggesting no difference in water loss. Thus, it is suggested that FT, despite involving a modest warming, increased the climate sensitivity of G. assimilis males and led to a change in their optimum temperature, pushing it beyond its usual thermal limits. However, higher mortality in FT compared to CT27 (control) and CT34 must be interpreted with caution. In addition, the risk of higher mortality of G. assimilis males is predicted, especially in South America, where this cricket is widely distributed.


Asunto(s)
Gryllidae , Animales , Cambio Climático , Jamaica , Masculino , Temperatura , Agua
3.
Neotrop Entomol ; 50(2): 237-246, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33594663

RESUMEN

The effects of reproduction are variable among insects, as well as the time of mate. In animals, a trade-off is usually observed between reproduction and self-maintenance, mostly in females because of egg producing costs. In the present investigation, manifestations of aging and senescence at population and cellular levels were studied associated with the mating opportunities. The main goal of this study was to evaluate the effect of mating on lifespan and also on the physiological aging in adult Jamaican field cricket females, Gryllus assimilis (Fabricius, 1775). Three experimental groups were set: virgin, normal-mated (14 days old), and late-mated (30 days old) insects. Lifespan, age-specific mortality rate, number of eggs laid, and in situ amount of the age-pigment neurolipofuscin were quantified. Results showed a trade-off between reproductive females and lifespan, with the strongest effects found in late-mated. Age-specific mortality showed a faster increase for late-mated females from 35 to 50 days old, followed by normal-mated females (35 to 60 days old). Virgins had the lowest age-specific mortality of all, increasing just from 65 to 73 days old. Normal-mated had the highest number of eggs laid, followed by late-mated and virgins, respectively. Neurolipofuscin accumulation rate was similar among groups, which was reflected in similar physiological rate of aging. Results indicate that reproductive status did affect the life-history of these field cricket females.


Asunto(s)
Envejecimiento , Gryllidae , Animales , Femenino , Gryllidae/fisiología , Longevidad , Óvulo , Reproducción
4.
Micron ; 142: 103000, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418160

RESUMEN

Insects have different types of cuticular sensory structures, called sensilla, which are employed in environmental perception due to their direct connection to the nervous system. Antennae are the main structures containing these sensilla in Lepidoptera. This study used scanning electron microscopy to describe the general morphology and the types of antennal sensilla of the great southern white butterfly, Ascia monuste, an important pest that feeds on cruciferous plants during its larval stages. Organizational, distributional, and functional aspects are comparatively discussed, as well as potential sexual dimorphism. Sensilla and general morphology were analyzed using a stereomicroscope and photomicrographs in the ImageJ software. Four types of sensilla were found in males and females: sensilla trichodea, chaetica, basiconica and coeloconica. The number of flagellomeres was different between sexes, with females having more articles and a longer antennal length than males. The capitate antenna of this butterfly had a unique elliptical central sulcus in the median ventral surface of each segment, mostly containing sensilla trichodea. Some organizational aspects of the sensilla chaetica close to the central sulci along the flagellum were observed. The remaining sensilla were randomly distributed on the antenna, mainly at the ventral surface, while the dorsal surface was almost totally covered by scales. This is the first report about ultrastructural morphology of the antenna of A. monuste, whose sensilla appear similar to those of other Pieridae butterflies, suggesting mechanical, chemo-, thermo-, and hygro-sensitivity in this insect.


Asunto(s)
Antenas de Artrópodos/ultraestructura , Mariposas Diurnas/citología , Sensilos/ultraestructura , Animales , Femenino , Masculino , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA