Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6200, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794007

RESUMEN

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe2. The ferroelectric domains are visualized through the imaging of the plasmonic response in a graphene monolayer adjacent to the moiré WSe2 bilayers. Specifically, we find that the ferroelectric polarization in moiré domains is imprinted on the plasmonic response of the graphene. Complementary nano-photocurrent measurements demonstrate that the optoelectronic properties of graphene are also modulated by the proximal ferroelectric domains. Our approach represents an alternative strategy for studying moiré ferroelectricity at native length scales and opens promising prospects for (opto)electronic devices.

2.
Nat Nanotechnol ; 18(1): 23-28, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36577852

RESUMEN

The interaction between distinct excitations in solids is of both fundamental interest and technological importance. One such interaction is the coupling between an exciton, a Coulomb bound electron-hole pair, and a magnon, a collective spin excitation. The recent emergence of van der Waals magnetic semiconductors1 provides a platform to explore these exciton-magnon interactions and their fundamental properties, such as strong correlation2, as well as their photospintronic and quantum transduction3 applications. Here we demonstrate the precise control of coherent exciton-magnon interactions in the layered magnetic semiconductor CrSBr. We varied the direction of an applied magnetic field relative to the crystal axes, and thus the rotational symmetry of the magnetic system4. Thereby, we tuned not only the exciton coupling to the bright magnon, but also to an optically dark mode via magnon-magnon hybridization. We further modulated the exciton-magnon coupling and the associated magnon dispersion curves through the application of uniaxial strain. At a critical strain, a dispersionless dark magnon band emerged. Our results demonstrate an unprecedented level of control of the opto-mechanical-magnonic coupling, and a step towards the predictable and controllable implementation of hybrid quantum magnonics5-11.

3.
Nano Lett ; 22(24): 10134-10139, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475690

RESUMEN

MnBi2Te4 is a van der Waals topological insulator with intrinsic intralayer ferromagnetic exchange and A-type antiferromagnetic interlayer coupling. Theoretically, it belongs to a class of structurally centrosymmetric crystals whose layered antiferromagnetic order breaks inversion symmetry for even layer numbers, making optical second harmonic generation (SHG) an ideal probe of the coupling between the crystal and magnetic structures. Here, we perform magnetic field and temperature-dependent SHG measurements on MnBi2Te4 flakes ranging from bulk to monolayer thickness. We find that the dominant SHG signal from MnBi2Te4 is unexpectedly unrelated to both magnetic state and layer number. We suggest that surface SHG is the likely source of the observed strong SHG, whose symmetry matches that of the MnBi2Te4-vacuum interface. Our results highlight the importance of considering the surface contribution to inversion symmetry-breaking in van der Waals centrosymmetric magnets.

4.
Nat Nanotechnol ; 17(3): 256-261, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35058657

RESUMEN

Mechanical deformation of a crystal can have a profound effect on its physical properties. Notably, even small modifications of bond geometry can completely change the size and sign of magnetic exchange interactions and thus the magnetic ground state. Here we report the strain tuning of the magnetic properties of the A-type layered antiferromagnetic semiconductor CrSBr achieved by designing a strain device that can apply continuous, in situ uniaxial tensile strain to two-dimensional materials, reaching several percent at cryogenic temperatures. Using this apparatus, we realize a reversible strain-induced antiferromagnetic-to-ferromagnetic phase transition at zero magnetic field and strain control of the out-of-plane spin-canting process. First-principles calculations reveal that the tuning of the in-plane lattice constant strongly modifies the interlayer magnetic exchange interaction, which changes sign at the critical strain. Our work creates new opportunities for harnessing the strain control of magnetism and other electronic states in low-dimensional materials and heterostructures.

5.
Nat Mater ; 20(12): 1657-1662, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34312534

RESUMEN

When monolayers of two-dimensional (2D) materials are stacked into van der Waals structures, interlayer electronic coupling can introduce entirely new properties, as exemplified by recent discoveries of moiré bands that host highly correlated electronic states and quantum dot-like interlayer exciton lattices. Here we show the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr. Excitonic transitions in bilayers and above can be drastically changed when the magnetic order is switched from the layered antiferromagnetic ground state to a field-induced ferromagnetic state, an effect attributed to the spin-allowed interlayer hybridization of electron and hole orbitals in the latter, as revealed by Green's function-Bethe-Salpeter equation (GW-BSE) calculations. Our work uncovers a magnetic approach to engineer electronic and excitonic effects in layered magnetic semiconductors.

6.
Nat Nanotechnol ; 16(6): 655-660, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33707746

RESUMEN

Two-dimensional (2D) semiconductors enable the investigation of light-matter interactions in low dimensions1,2. Yet, the study of elementary photoexcitations in 2D semiconductors with intrinsic magnetic order remains a challenge due to the lack of suitable materials3,4. Here, we report the observation of excitons coupled to zigzag antiferromagnetic order in the layered antiferromagnetic insulator NiPS3. The exciton exhibits a narrow photoluminescence linewidth of roughly 350 µeV with near-unity linear polarization. When we reduce the sample thickness from five to two layers, the photoluminescence is suppressed and eventually vanishes for the monolayer. This suppression is consistent with the calculated bandgap of NiPS3, which is highly indirect for both the bilayer and the monolayer5. Furthermore, we observe strong linear dichroism (LD) over a broad spectral range. The optical anisotropy axes of LD and of photoluminescence are locked to the zigzag direction. Furthermore, their temperature dependence is reminiscent of the in-plane magnetic susceptibility anisotropy. Hence, our results indicate that LD and photoluminescence could probe the symmetry breaking magnetic order parameter of 2D magnetic materials. In addition, we observe over ten exciton-A1g-phonon bound states on the high-energy side of the exciton resonance, which we interpret as signs of a strong modulation of the ligand-to-metal charge-transfer energy by electron-lattice interactions. Our work establishes NiPS3 as a 2D platform for exploring magneto-exciton physics with strong correlations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...