RESUMEN
Resident macrophages are distributed across all tissues and are highly heterogeneous due to adaptation to different tissue-specific environments. The resident macrophages of the sensory ganglia (sensory neuron-associated macrophages, sNAMs) are in close contact with the cell body of primary sensory neurons and might play physiological and pathophysiological roles. After peripheral nerve injury, there is an increase in the population of macrophages in the sensory ganglia, which have been implicated in different conditions, including neuropathic pain development. However, it is still under debate whether macrophage accumulation in the sensory ganglia after peripheral nerve injury is due to the local proliferation of resident macrophages or a result of blood monocyte infiltration. Here, we confirmed that the number of macrophages increased in the sensory ganglia after the spared nerve injury (SNI) model in mice. Using different approaches, we found that the increase in the number of macrophages in the sensory ganglia after SNI is a consequence of the proliferation of resident CX3CR1+ macrophages, which participate in the development of neuropathic pain, but not due to infiltration of peripheral blood monocytes. These proliferating macrophages are the source of pro-inflammatory cytokines such as TNF and IL-1b. In addition, we found that CX3CR1 signaling is involved in the sNAMs proliferation and neuropathic pain development after peripheral nerve injury. In summary, these results indicated that peripheral nerve injury leads to sNAMs proliferation in the sensory ganglia in a CX3CR1-dependent manner accounting for neuropathic pain development. In conclusion, sNAMs proliferation could be modulated to change pathophysiological conditions such as chronic neuropathic pain.
Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratones , Animales , Traumatismos de los Nervios Periféricos/complicaciones , Ganglios Espinales , Macrófagos , Ganglios Sensoriales , Células Receptoras Sensoriales , Proliferación Celular , HiperalgesiaRESUMEN
Th17 cell differentiation and pathogenicity depend on metabolic reprogramming inducing shifts toward glycolysis. Here, we show that the pyruvate kinase M2 (PKM2), a glycolytic enzyme required for cancer cell proliferation and tumor progression, is a key factor mediating Th17 cell differentiation and autoimmune inflammation. We found that PKM2 is highly expressed throughout the differentiation of Th17 cells in vitro and during experimental autoimmune encephalomyelitis (EAE) development. Strikingly, PKM2 is not required for the metabolic reprogramming and proliferative capacity of Th17 cells. However, T cell-specific PKM2 deletion impairs Th17 cell differentiation and ameliorates symptoms of EAE by decreasing Th17 cell-mediated inflammation and demyelination. Mechanistically, PKM2 translocates into the nucleus and interacts with STAT3, enhancing its activation and thereby increasing Th17 cell differentiation. Thus, PKM2 acts as a critical nonmetabolic regulator that fine-tunes Th17 cell differentiation and function in autoimmune-mediated inflammation.
Asunto(s)
Autoinmunidad/fisiología , Inflamación/metabolismo , Piruvato Quinasa/fisiología , Factor de Transcripción STAT3/metabolismo , Células Th17/fisiología , Animales , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Piruvato Quinasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Th17/metabolismoRESUMEN
The inflammatory/immune response at the site of peripheral nerve injury participates in the pathophysiology of neuropathic pain. Nevertheless, little is known about the local regulatory mechanisms underlying peripheral nerve injury that counteracts the development of pain. Here, we investigated the contribution of regulatory T (Treg) cells to the development of neuropathic pain by using a partial sciatic nerve ligation model in mice. We showed that Treg cells infiltrate and proliferate in the site of peripheral nerve injury. Local Treg cells suppressed the development of neuropathic pain mainly through the inhibition of the CD4 Th1 response. Treg cells also indirectly reduced neuronal damage and neuroinflammation at the level of the sensory ganglia. Finally, we identified IL-10 signaling as an intrinsic mechanism by which Treg cells counteract neuropathic pain development. These results revealed Treg cells as important inhibitory modulators of the immune response at the site of peripheral nerve injury that restrains the development of neuropathic pain. In conclusion, the boosting of Treg cell function/activity might be explored as a possible interventional approach to reduce neuropathic pain development after peripheral nerve damage.
Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Linfocitos T Reguladores , Animales , Hiperalgesia , Ratones , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/complicaciones , Nervio Ciático , Células TH1RESUMEN
The development of neuropathic pain after peripheral nerve injury involves neuroimmune-glial interactions in the spinal cord. However, whether the development of neuropathic pain depends on the infiltration of peripheral immune cells, such as monocytes, into the spinal cord parenchyma after peripheral nerve damage remains unclear. Here, we used a combination of different techniques such as transgenic reporter mouse (Cx3cr1GFP/+ and Ccr2RFP/+ mice), bone marrow chimeric mice, and parabiosis to investigate this issue in spared nerve injury (SNI) model. Herein, we provided robust evidence that, although microglial cells are activated/proliferate at the dorsal horn of the spinal cord after SNI, peripheral hematopoietic cells (including monocytes) are not able to infiltrate into the spinal cord parenchyma. Furthermore, there was no evidence of CCR2 expression in intrinsic cells of the spinal cord. However, microglial cells activation/proliferation in the spinal cord and mechanical allodynia after SNI were reduced in Ccr2-deficient mice. These results suggest that blood-circulating leukocytes cells are not able to infiltrate the spinal cord parenchyma after distal peripheral nerve injury. Nevertheless, they indicate that CCR2-expressing cells might be indirectly regulating microglia activation/proliferation in the spinal cord after SNI. In conclusion, our study supports that CCR2 inhibition could be explored as an interventional approach to reduce microglia activation and consequently neuropathic pain development after peripheral nerve injury.
Asunto(s)
Leucocitos/patología , Traumatismos de los Nervios Periféricos/sangre , Traumatismos de los Nervios Periféricos/patología , Médula Espinal/patología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Endotelio Vascular/patología , Femenino , Células Madre Hematopoyéticas/metabolismo , Hiperalgesia/sangre , Hiperalgesia/complicaciones , Hiperalgesia/inmunología , Hiperalgesia/patología , Masculino , Ratones Endogámicos C57BL , Microglía/patología , Monocitos/patología , Neuralgia/sangre , Neuralgia/complicaciones , Neuralgia/inmunología , Neuralgia/patología , Receptores CCR2/deficiencia , Receptores CCR2/metabolismoRESUMEN
Neuropathic pain is one of the most important types of chronic pain. It is caused by neuronal damage. Clinical and experimental studies suggest a critical role for neuroimmune interactions in the development of neuropathic pain. In this article, we have shown that the cytoplasmic receptor Nod-like receptor-2, NOD2, and its adaptor-signaling molecule RIPK2 participate in the development of neuropathic pain after peripheral nerve injury (spared nerve injury model). The activation of NOD2 signaling in peripheral macrophage mediates the development of neuropathic pain through the production of pronociceptive cytokines (tumor necrosis factor and IL-1ß). This study found that peripheral nerve injury promoted a systemic increase in the NOD2 ligand. These results highlight a previously undetermined role for NOD2 signaling in the development of neuropathic pain, suggesting a new potential target for preventing neuropathic pain.
Asunto(s)
Macrófagos/metabolismo , Neuralgia/patología , Neuralgia/fisiopatología , Proteína Adaptadora de Señalización NOD2/metabolismo , Animales , Trasplante de Médula Ósea , Carragenina/toxicidad , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/terapia , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Minociclina/uso terapéutico , Neuralgia/genética , Neuralgia/cirugía , Fármacos Neuroprotectores/uso terapéutico , Proteína Adaptadora de Señalización NOD2/genética , ARN Interferente Pequeño/uso terapéutico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Xantinas/uso terapéuticoRESUMEN
Neuroimmune-glia interactions have been implicated in the development of neuropathic pain. Interleukin-27 (IL-27) is a cytokine that presents regulatory activity in inflammatory conditions of the central nervous system. Thus, we hypothesized that IL-27 would participate in the neuropathic pain process. Here, we found that neuropathic pain caused by peripheral nerve injury (spared nerve injury model; SNI), was enhanced in IL-27-deficient(-/-) mice, whereas nociceptive pain is similar to that of wild-type mice. SNI induced an increase in the expression of IL-27 and its receptor subunit (Wsx1) in the sensory ganglia and spinal cord. IL-27 receptor was expressed mainly in resident macrophage, microglia, and astrocytes of the sensory ganglia and spinal cord, respectively. Finally, we identify that the antinociceptive effect of IL-27 was not observed in IL-10-/- mice. These results provided evidence that IL-27 is a cytokine produced after peripheral nerve injury that counteracts neuropathic pain development through induction of the antinociceptive cytokine IL-10. In summary, our study unraveled the role of IL-27 as a regulatory cytokine that counteracts the development of neuropathic pain after peripheral nerve damage. In conclusion, they indicate that immunotherapies based on IL-27 could emerge as possible therapeutic approaches for the prevention of neuropathic pain development after peripheral nerve injury.
Asunto(s)
Susceptibilidad a Enfermedades , Interleucina-10/metabolismo , Interleucina-27/metabolismo , Neuralgia/etiología , Neuralgia/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales , Interleucina-27/genética , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Médula Espinal/metabolismo , Médula Espinal/fisiopatologíaRESUMEN
The assessment of articular nociception in experimental animals is a challenge because available methods are limited and subject to investigator influence. In an attempt to solve this problem, the purpose of this study was to establish the use of dynamic weight bearing (DWB) as a new device for evaluating joint nociception in an experimental model of antigen-induced arthritis (AIA) in mice. AIA was induced in Balb/c and C57BL/6 mice, and joint nociception was evaluated by DWB. Western Blotting and real-time PCR were used to determine protein and mRNA expression, respectively. DWB detected a dose- and time-dependent increase in joint nociception during AIA and was able to detect the dose-response effects of different classes of analgesics. Using DWB, it was possible to evaluate the participation of spinal glial cells (microglia and astrocytes) and cytokines (IL-1ß and TNFα) for the genesis of joint nociception during AIA. In conclusion, the present results indicated that DWB is an effective, objective and predictable test to study both the pathophysiological mechanisms involved in arthritic nociception in mice and for evaluating novel analgesic drugs against arthritis.