Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Rev Lett ; 126(16): 164802, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33961468

RESUMEN

We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2π) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.

2.
Phys Rev E ; 103(1-1): 013206, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601592

RESUMEN

The laser interaction with an electron-positron-ion mixed plasma is studied from the perspective of the associated high-order harmonic generation. For an idealized mixed plasma which is assumed with a sharp plasma-vacuum interface and uniform density distribution, when it is irradiated by a weakly relativistic laser pulse, well-defined signals at harmonics of the plasma frequency in the harmonic spectrum are observed. These characteristic signals are attributed to the inverse two-plasmon decay of the counterpropagating monochromatic plasma waves which are excited by the energetic electrons and the positron beam accelerated by the laser. Particle-in-cell simulations show the signal at twice the plasma frequency can be observed for a pair density as low as ∼10^{-5} of the plasma density. In the self-consistent scenario of pair production by an ultraintense laser striking a solid target, particle-in-cell simulations, which account for quantum electrodynamic effects (photon emission and pair production), show that dense (greater than the relativistically corrected critical density) and hot pair plasmas can be created. The harmonic spectrum shows weak low-order harmonics, indicating a high laser absorption due to quantum electrodynamic effects. The characteristic signals at harmonics of the plasma frequency are absent, because broadband plasma waves are excited due to the high plasma inhomogeneity introduced by the interaction. However, the high-frequency harmonics are enhanced due to the high-frequency modulations from the direct laser coupling with created pair plasmas.

3.
Sci Rep ; 10(1): 19875, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199788

RESUMEN

Raman or Brillouin amplification of a laser beam in plasma has long been seen as a way to reach multi-PW powers in compact laser systems. However, no significant plasma-based Raman amplification of a laser pulse beyond 0.1 TW has been achieved in nearly 20 years, and only one report of Brillouin amplification beyond 1 TW. In this paper, we reveal novel non-linear criteria for the initial seed pulse that will finally open the door to efficient Raman and Brillouin amplification to petawatt powers and Joule-level energies. We show that the triple product of the coupling constant [Formula: see text], seed pulse duration [Formula: see text] and seed pulse amplitude a for the Raman seed pulse (or [Formula: see text] for Brillouin) must exceed a specific minimum threshold for efficient amplification. We also analyze the plasma-based Raman and Brillouin amplification experiments to date, and show that the seed pulses used in nearly all experiments are well below our new threshold, which explains the poor efficiency obtained in them. Finally, we analyze a recent Brillouin amplification experiment that used increased seed pulse power to obtain Joule-level amplification, and find excellent agreement with our theory.

4.
Phys Rev Lett ; 125(26): 264801, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449727

RESUMEN

We study experimentally the effect of linear plasma density gradients on the self-modulation of a 400 GeV proton bunch. Results show that a positive or negative gradient increases or decreases the number of microbunches and the relative charge per microbunch observed after 10 m of plasma. The measured modulation frequency also increases or decreases. With the largest positive gradient we observe two frequencies in the modulation power spectrum. Results are consistent with changes in wakefields' phase velocity due to plasma density gradients adding to the slow wakefields' phase velocity during self-modulation growth predicted by linear theory.

5.
Phys Rev Lett ; 125(26): 265001, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449734

RESUMEN

Photon bursts with a wavelength smaller than the plasma interparticle distance can drive plasma wakes via Compton scattering. We investigate this fundamental process analytically and numerically for different photon frequencies, photon flux, and plasma magnetization. Our results show that Langmuir and extraordinary modes are driven efficiently when the photon energy density lies above a certain threshold. The interaction of photon bursts with magnetized plasmas is of distinguished interest as the generated extraordinary modes can convert into pure electromagnetic waves at the plasma-vacuum boundary. This could possibly be a mechanism for the generation of radio waves in astrophysical scenarios in the presence of intense sources of high energy photons.

7.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180418, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-31230571

RESUMEN

In this article, we briefly summarize the experiments performed during the first run of the Advanced Wakefield Experiment, AWAKE, at CERN (European Organization for Nuclear Research). The final goal of AWAKE Run 1 (2013-2018) was to demonstrate that 10-20 MeV electrons can be accelerated to GeV energies in a plasma wakefield driven by a highly relativistic self-modulated proton bunch. We describe the experiment, outline the measurement concept and present first results. Last, we outline our plans for the future. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

8.
Phys Rev Lett ; 122(5): 054802, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30822008

RESUMEN

We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory.

9.
Phys Rev Lett ; 122(5): 054801, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30822039

RESUMEN

We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1×10^{14} and 7.7×10^{14} electrons/cm^{3}. We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (<15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels.

10.
Nature ; 561(7723): 363-367, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30188496

RESUMEN

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1-5, in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse6-9 or electron bunch10,11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies5,12. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage13. Long, thin proton bunches can be used because they undergo a process called self-modulation14-16, a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that our results are an important step towards the development of future high-energy particle accelerators21,22.

11.
Phys Rev Lett ; 118(17): 174801, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498714

RESUMEN

Current models predict the hose instability to crucially limit the applicability of plasma-wakefield accelerators. By developing an analytical model which incorporates the evolution of the hose instability over long propagation distances, this work demonstrates that the inherent drive-beam energy loss, along with an initial beam-energy spread, detunes the betatron oscillations of beam electrons and thereby mitigates the instability. It is also shown that tapered plasma profiles can strongly reduce initial hosing seeds. Hence, we demonstrate that the propagation of a drive beam can be stabilized over long propagation distances, paving the way for the acceleration of high-quality electron beams in plasma-wakefield accelerators. We find excellent agreement between our models and particle-in-cell simulations.

12.
Phys Rev E ; 95(2-1): 023210, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28297954

RESUMEN

The growth rates of seeded QED cascades in counterpropagating lasers are calculated with first-principles two- and three-dimensional QED-PIC (particle-in-cell) simulations. The dependence of the growth rate on the laser polarization and intensity is compared with analytical models that support the findings of the simulations. The models provide insight regarding the qualitative trend of the cascade growth when the intensity of the laser field is varied. A discussion about the cascade's threshold is included, based on the analytical and numerical results. These results show that relativistic pair plasmas and efficient conversion from laser photons to γ rays can be observed with the typical intensities planned to operate on future ultraintense laser facilities such as ELI or Vulcan.

13.
Sci Rep ; 6: 29402, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435449

RESUMEN

We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

14.
Nat Commun ; 7: 10371, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26817620

RESUMEN

Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab initio three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high-energy-density science, compact plasma-based accelerators and light sources.

15.
Phys Rev Lett ; 117(26): 265001, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28059529

RESUMEN

We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting three-wave interactions.

16.
Artículo en Inglés | MEDLINE | ID: mdl-26382337

RESUMEN

Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c/ωpe) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.

17.
Phys Rev Lett ; 113(13): 134801, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302892

RESUMEN

Using full-scale 3D particle-in-cell simulations we show that the radiation reaction dominated regime can be reached in an all-optical configuration through the collision of a ~1 GeV laser wakefield accelerated electron bunch with a counterpropagating laser pulse. In this configuration the radiation reaction significantly reduces the energy of the particle bunch, thus providing clear experimental signatures for the process with currently available lasers. We also show that the transition between the classical and quantum radiation reaction could be investigated in the same configuration with laser intensities of 10²³ W/cm².

18.
Phys Rev Lett ; 113(10): 105002, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238365

RESUMEN

A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales ∼10(4)ωpe-1. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well confined to the downstream region of the electrostatic shock. The shock formation process is not modified, and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.

19.
Phys Rev Lett ; 112(17): 175001, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24836254

RESUMEN

Particle-in-cell simulations are used to investigate the formation of magnetic fields B in plasmas with perpendicular electron density and temperature gradients. For system sizes L comparable to the ion skin depth d(i), it is shown that B ∼ d(i)/L, consistent with the Biermann battery effect. However, for large L/d(i), it is found that the Weibel instability (due to electron temperature anisotropy) supersedes the Biermann battery as the main producer of B. The Weibel-produced fields saturate at a finite amplitude (plasma ß ≈ 100), independent of L. The magnetic energy spectra below the electron Larmor radius scale are well fitted by the power law with slope -16/3, as predicted by Schekochihin et al. [Astrophys. J. Suppl. Ser. 182, 310 (2009)].

20.
Sci Rep ; 4: 3934, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24488212

RESUMEN

Collisionless shocks are pervasive in astrophysics and they are critical to understand cosmic ray acceleration. Laboratory experiments with intense lasers are now opening the way to explore and characterise the underlying microphysics, which determine the acceleration process of collisionless shocks. We determine the shock character - electrostatic or electromagnetic - based on the stability of electrostatic shocks to transverse electromagnetic fluctuations as a function of the electron temperature and flow velocity of the plasma components, and we compare the analytical model with particle-in-cell simulations. By making the connection with the laser parameters driving the plasma flows, we demonstrate that shocks with different and distinct underlying microphysics can be explored in the laboratory with state-of-the-art laser systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...