Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
J Environ Manage ; 359: 121012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718601

RESUMEN

Forest Islands and their adjacent natural grasslands are vulnerable and sensitive ecosystems to the actions of severe fires, which result in losses of their resilience, which makes the potential of passive restoration of these environments unfeasible after such events. This study aims to verify, through an autochthonous species exclusive to these Forest Islands, whether it can develop in Histosols around a Forest Island that has been degraded by fire for years. The place of study and collection of the material tested was in the Sempre-Vivas National Park. Histosols samples were collected for analysis of chemical and physical attributes and experimental conduction in a seedling nursery. The performance of Richeria grandis was evaluated in these Histosols from seed vigor tests, initial plant growth in a greenhouse. R. grandis manages to develop in Histosols around the degraded Forest Island, disregarding possible interspecific field competitions. The physical and chemical characteristics of the Histosols around the island do not prevent the effective restoration of this phytocenosis. R. grandis showed the same seed vigor for all Histosols tested and all seedlings survived until the end of the experiment. It was observed that the seedlings grown in the Histosols of the island of the forest, showed a behavior of greater height, number of leaves and moisture content, and the place with exposed Histosols, with the highest fire severity, provided the lowest development in height, diameter and number of leaves. According to ecophysiological analyses, the species is under some environmental stress regardless of the treatment.


Asunto(s)
Incendios , Bosques , Árboles , Plantones/crecimiento & desarrollo , Ecosistema
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38675425

RESUMEN

OBJECTIVE: This study evaluated the influence of cannabis and/or cocaine use in human immunodeficiency virus (HIV)- and cytomegalovirus (CMV)-specific T-cell responses of people with HIV (PWH). RESULTS: There was a higher percentage of IL-17-producing HIV-Gag-specific CD8+ T-cells in all drug users than that in PWH non-drug users. Stratifying the drug-user groups, increased percentages of IL-17-producing HIV-Gag-specific CD4+ and CD8+ T-cells were found in PWH cannabis plus cocaine users compared to PWH non-drug users. In response to CMV, there were higher percentage of IL-17-producing CMV-specific CD8+ T-cell in PWH cocaine users than that in PWH non-drug users. Considering all drug users together, there was a higher percentage of SEB-stimulated IL-17-producing CD4+ T-cells than that in PWH non-drug users, whereas cannabis users had higher percentages of IL-17-producing CD4+ T-cells compared to non-drug users. METHODS: Cryopreserved peripheral blood mononuclear cells from 37 PWH undergoing antiretroviral therapy (ART) using cannabis (10), cocaine (7), or cannabis plus cocaine (10) and non-drug users (10) were stimulated with HIV-1 Gag or CMV-pp65 peptide pools, or staphylococcal enterotoxin B (SEB) and evaluated for IFN-γ- and/or IL-17A-producing CD4+ and CD8+ T-cells using flow cytometry. CONCLUSIONS: Cannabis plus cocaine use increased HIV-specific IL-17 producing T-cells and cocaine use increased IL-17 CMV-specific CD8+ T-cell responses which could favor the inflammatory conditions associated with IL-17 overproduction.

3.
Methods Mol Biol ; 2782: 175-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622402

RESUMEN

The encounter of T cells with the antigen through the interaction of T cell receptors with peptides and major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs) can generate effector response and memory T cells. Memory T cells developed following infections or vaccination may persist, leading to the generation of a specific immune response upon reexposure to the same pathogen through rapid clonal proliferation and activation of effector functions. T cell memory subsets can be identified based on the expression of several membrane markers such as CCR7, CD27, and CD45RA. Using fluorescent antibodies against these markers and a flow cytometer, it is possible to perform immunophenotyping via the analysis of cell surface expression of proteins by different subpopulations such as the subsets of naïve, effector, and memory T cells as well as via the analysis of functional markers that further characterize each sample. Intracellular cytokine staining allows for the evaluation of intracellular proteins expressed in T cells in response to antigenic stimulation. This chapter presents the phenotypic and functional characterization of memory T cells after antigenic stimulation, detailing the procedures for identifying intracellular and surface protein markers. Herein, we review and present a reproducible standardized protocol using antibodies for specific markers and applying flow cytometry.


Asunto(s)
Linfocitos T CD8-positivos , Subgrupos de Linfocitos T , Antígenos Comunes de Leucocito/análisis , Citocinas , Biomarcadores , Linfocitos T CD4-Positivos , Memoria Inmunológica , Inmunofenotipificación
4.
J Infect Dis ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271704

RESUMEN

BACKGROUND: Transcriptomics has been used to evaluate immune responses during malaria in diverse cohorts worldwide. However, the high heterogeneity of cohorts and poor generalization of transcriptional signatures reported in each study limit their potential clinical applications. METHODS: We compiled 28 public datasets containing 1,556 whole blood or peripheral blood mononuclear cells (PBMC) transcriptome samples. We estimated effect sizes with Hedges´ g and DerSimonian-Laird random effects model for meta-analyses of uncomplicated malaria. Random forest models identified gene signatures that discriminate malaria from bacterial infections or malaria severity. Parasitological, hematological, immunological, and metabolomics data were used for validation. RESULTS: We identified three gene signatures denominated the uncomplicated Malaria Meta-Signature (uMMS), which discriminates P. falciparum malaria from uninfected controls; the Malaria or Bacteria Signature (MoBS), that distinguishes malaria from sepsis and enteric fever; and the cerebral Malaria Meta-Signature (cMMS), which characterizes individuals with cerebral malaria. These signatures correlate with clinical hallmark features of malaria. Blood transcription modules (BTM) indicate immune regulation by glucocorticoids, whereas cell development and adhesion are associated with cerebral malaria. CONCLUSION: Transcriptional meta-signatures reflecting immune cell responses provide potential biomarkers for translational innovation and suggest critical roles for metabolic regulators of inflammation during malaria.

5.
Pharmaceutics ; 15(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896265

RESUMEN

Malaria is a parasitic infection responsible for high morbidity and mortality rates worldwide. During the disease, phagocytosis of infected red blood cells by the macrophages induces the production of reactive oxygen (ROS) and nitrogen species (RNS), culminating in parasite death. Curcumin (CUR) is a bioactive compound that has been demonstrated to reduce the production of pro-inflammatory cytokines and chemokines produced by macrophages but to reduce parasitemia in infected mice. Hence, the main purpose of this study is to investigate whether curcumin may interfere with macrophage function and polarization after Plasmodium berghei infection in vitro. In our findings, non-polarized macrophage (M0), classically activated (M1), and alternatively activated (M2) phenotypes showed significantly increased phagocytosis of infected red blood cells (iRBCs) when compared to phagocytosis of uninfected red blood cells (RBCs) 3 h after infection. After 24 h, M1 macrophages exposed to RBCs + CUR showed greater elimination capacity when compared to macrophages exposed to iRBCs + CUR, suggesting the interference of curcumin with the microbicidal activity. Additionally, curcumin increased the phagocytic activity of macrophages when used in non-inflammatory conditions (M0) and reduced the inducible nitric oxide synthase (iNOS) and arginase activities in all macrophage phenotypes infected (M0, M1, and M2), suggesting interference in arginine availability by curcumin and balance promotion in macrophage polarization in neutral phenotype (M0). These results support the view of curcumin treatment in malaria as an adjuvant, promoting a balance between pro- and anti-inflammatory responses for a better clinical outcome.

6.
Front Immunol ; 14: 1206979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876932

RESUMEN

Introduction: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods: We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results: This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion: In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Nucleocápside , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina M
7.
Vaccines (Basel) ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37514999

RESUMEN

Immune responses after COVID-19 vaccination should be evaluated in different populations around the world. This study compared antibody responses induced by ChAdOx1 nCoV-19, CoronaVac, and BNT162b2 vaccines. Blood samples from vaccinees were collected pre- and post-vaccinations with the second and third doses. The study enrolled 78 vaccinees, of whom 62.8% were women, with the following median ages: 26 years-ChAdOx1 nCoV-19; 40 years-CoronaVac; 30 years-BNT162b2. Serum samples were quantified for anti-RBD IgG and anti-RBD IgA and anti-spike IgG by ELISA. After two vaccine doses, BNT162b2 vaccinees produced higher levels of anti-RBD IgA and IgG, and anti-spike IgG compared to ChAdOx1 nCoV-19 and CoronaVac vaccinees. The third dose booster with BNT162b2 induced higher levels of anti-RBD IgA and IgG, and anti-spike IgG in CoronaVac vaccinees. Individuals who reported a SARS-CoV-2 infection before or during the study had higher anti-RBD IgA and IgG production. In conclusion, two doses of the studied vaccines induced detectable levels of anti-RBD IgA and IgG and anti-spike IgG in vaccinees. The heterologous booster with BNT162b2 increased anti-RBD IgA and IgG and anti-spike IgG levels in CoronaVac vaccinees and anti-RBD IgA levels in ChAdOx1 nCoV-19 vaccinees. Furthermore, SARS-CoV-2 infection induced higher anti-RBD IgA and IgG levels in CoronaVac vaccinees.

8.
J Endod ; 49(9): 1183-1190, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37419243

RESUMEN

INTRODUCTION: This study compared disinfection and shaping after root canal preparation with either XP-endo Shaper or TruNatomy instrument systems, supplemented by ultrasonic activation of sodium hypochlorite (NaOCl) with either stainless-steel (SS) or nickel-titanium (NiTi) inserts. METHODS: Mesial roots from mandibular molars with Vertucci class II configuration were divided into 2 groups (n = 24) based on anatomically paired micro-computed tomography (micro-CT) analyses. Pre and postpreparation micro-CT scans were obtained to evaluate the shaping performance. The canals were contaminated with a mixed bacterial culture for 30 days and then subjected to preparation with either XP-endo Shaper or TruNatomy instruments using NaOCl irrigation. Supplementary ultrasonic activation of NaOCl was conducted using either an SS (TruNatomy group) or NiTi (XP-endo Shaper group) insert. Bacteriological samples were taken from the canals before preparation (S1), after preparation (S2), and after the supplementary approach (S3). Bacterial reduction was evaluated using a quantitative real-time polymerase chain reaction. RESULTS: Preparation with both instrument systems significantly reduced bacterial counts (P < .01). After preparation, 36% (TruNatomy) and 35% (XP-endo Shaper) were negative for bacteria. These values increased to 59% and 65% after ultrasonic activation with the SS and NiTi inserts, respectively. The quantitative data in S2 showed that XP-endo Shaper promoted a significantly higher bacterial reduction than TruNatomy (P < .05). No significant intragroup differences were observed after ultrasonic activation (P > .05), probably because the SS insert promoted a significantly higher S2-to-S3 reduction than the NiTi insert (P < .01). Micro-CT analysis revealed no significant differences in the unprepared areas between the groups (P > .05). CONCLUSIONS: The XP-endo Shaper caused a significantly higher bacterial reduction than TruNatomy in Vertucci class II canals. Better antibacterial results after ultrasonic activation were observed for the SS ultrasonic inserts than for the NiTi inserts.


Asunto(s)
Cavidad Pulpar , Hipoclorito de Sodio , Cavidad Pulpar/diagnóstico por imagen , Cavidad Pulpar/microbiología , Hipoclorito de Sodio/uso terapéutico , Microtomografía por Rayos X , Desinfección , Ultrasonido , Preparación del Conducto Radicular
9.
Methods Mol Biol ; 2673: 411-429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258930

RESUMEN

Zika virus (ZIKV) is an emerging virus from the Flaviviridae family and Flavivirus genus that has caused important outbreaks around the world. ZIKV infection is associated with severe neuropathology in newborns and adults. Until now, there is no licensed vaccine available for ZIKV infection. Therefore, the development of a safe and effective vaccine against ZIKV is an urgent need. Recently, we designed an in silico multi-epitope vaccine for ZIKV based on immunoinformatics tools. To construct this in silico ZIKV vaccine, we used a consensus sequence generated from ZIKV sequences available in databank. Then, we selected CD4+ and CD8+ T cell epitopes from all ZIKV proteins based on the binding prediction to class II and class I human leukocyte antigen (HLA) molecules, promiscuity, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the construct and B cell epitopes were identified. Adjuvants were associated to increase immunogenicity. Distinct linkers were used for connecting the CD4+ and CD8+ T cell epitopes, EDIII, and adjuvants. Several analyses, such as antigenicity, population coverage, allergenicity, autoimmunity, and secondary and tertiary structures of the vaccine, were evaluated using various immunoinformatics tools and online web servers. In this chapter, we present the protocols with the rationale and detailed steps needed for this in silico multi-epitope ZIKV vaccine design.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Recién Nacido , Humanos , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Epítopos de Linfocito T , Epítopos de Linfocito B , Proteínas del Envoltorio Viral , Biología Computacional/métodos , Simulación del Acoplamiento Molecular
10.
Microbiol Spectr ; : e0219422, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852984

RESUMEN

Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.

11.
J Mol Med (Berl) ; 101(1-2): 183-195, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36790534

RESUMEN

Higher endotoxin in the circulation may indicate a compromised state of host immune response against coinfections in severe COVID-19 patients. We evaluated the inflammatory response of monocytes from COVID-19 patients after lipopolysaccharide (LPS) challenge. Whole blood samples of healthy controls, patients with mild COVID-19, and patients with severe COVID-19 were incubated with LPS for 2 h. Severe COVID-19 patients presented higher LPS and sCD14 levels in the plasma than healthy controls and mild COVID-19 patients. In non-stimulated in vitro condition, severe COVID-19 patients presented higher inflammatory cytokines and PGE-2 levels and CD14 + HLA-DRlow monocytes frequency than controls. Moreover, severe COVID-19 patients presented higher NF-κB p65 phosphorylation in CD14 + HLA-DRlow, as well as higher expression of TLR-4 and NF-κB p65 phosphorylation in CD14 + HLA-DRhigh compared to controls. The stimulation of LPS in whole blood of severe COVID-19 patients leads to lower cytokine production but higher PGE-2 levels compared to controls. Endotoxin challenge with both concentrations reduced the frequency of CD14 + HLA-DRlow in severe COVID-19 patients, but the increases in TLR-4 expression and NF-κB p65 phosphorylation were more pronounced in both CD14 + monocytes of healthy controls and mild COVID-19 patients compared to severe COVID-19 group. We conclude that acute SARS-CoV-2 infection is associated with diminished endotoxin response in monocytes. KEY MESSAGES: Severe COVID-19 patients had higher levels of LPS and systemic IL-6 and TNF-α. Severe COVID-19 patients presented higher CD14+HLA-DRlow monocytes. Increased TLR-4/NF-κB axis was identified in monocytes of severe COVID-19. Blunted production of cytokines after whole blood LPS stimulation in severe COVID-19. Lower TLR-4/NF-κB activation in monocytes after LPS stimulation in severe COVID-19.


Asunto(s)
COVID-19 , Monocitos , Humanos , Monocitos/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Tolerancia a Endotoxinas , Lipopolisacáridos , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antígenos HLA-DR/metabolismo , Receptores de Lipopolisacáridos/metabolismo
12.
J Cell Physiol ; 237(8): 3394-3407, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35754396

RESUMEN

Purinergic signaling modulates immune function and is involved in the immunopathogenesis of several viral infections. This study aimed to investigate alterations in purinergic pathways in coronavirus disease 2019 (COVID-19) patients. Mild and severe COVID-19 patients had lower extracellular adenosine triphosphate and adenosine levels, and higher cytokines than healthy controls. Mild COVID-19 patients presented lower frequencies of CD4+ CD25+ CD39+ (activated/memory regulatory T cell [mTreg]) and increased frequencies of high-differentiated (CD27- CD28- ) CD8+ T cells compared with healthy controls. Severe COVID-19 patients also showed higher frequencies of CD4+ CD39+ , CD4+ CD25- CD39+ (memory T effector cell), and high-differentiated CD8+ T cells (CD27- CD28- ), and diminished frequencies of CD4+ CD73+ , CD4+ CD25+ CD39+ mTreg cell, CD8+ CD73+ , and low-differentiated CD8+ T cells (CD27+ CD28+ ) in the blood in relation to mild COVID-19 patients and controls. Moreover, severe COVID-19 patients presented higher expression of PD-1 on low-differentiated CD8+ T cells. Both severe and mild COVID-19 patients presented higher frequencies of CD4+ Annexin-V+ and CD8+ Annexin-V+ T cells, indicating increased T-cell apoptosis. Plasma samples collected from severe COVID-19 patients were able to decrease the expression of CD73 on CD4+ and CD8+ T cells of a healthy donor. Interestingly, the in vitro incubation of peripheral blood mononuclear cell from severe COVID-19 patients with adenosine reduced the nuclear factor-κB activation in T cells and monocytes. Together, these data add new knowledge to the COVID-19 immunopathology through purinergic regulation.


Asunto(s)
5'-Nucleotidasa , Apirasa , COVID-19 , Linfocitos T , 5'-Nucleotidasa/metabolismo , Adenosina/sangre , Adenosina Trifosfato/sangre , Anexinas , Apirasa/metabolismo , Antígenos CD28/metabolismo , COVID-19/inmunología , Citocinas/sangre , Proteínas Ligadas a GPI/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Receptores Purinérgicos , Transducción de Señal , Linfocitos T/inmunología
13.
Front Genet ; 13: 857728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719399

RESUMEN

Zika virus (ZIKV) is an arbovirus mainly transmitted by mosquitos of the genus Aedes. The first cases of ZIKV infection in South America occurred in Brazil in 2015. The infection in humans causes diverse symptoms from asymptomatic to a syndrome-like dengue infection with fever, arthralgia, and myalgia. Furthermore, ZIKV infection during pregnancy is associated with fetal microcephaly and neurological disorders. The identification of host molecular mechanisms responsible for the modulation of different signaling pathways in response to ZIKV is the first step to finding potential biomarkers and therapeutic targets and understanding disease outcomes. In the last decade, it has been shown that microRNAs (miRNAs) are important post-transcriptional regulators involved in virtually all cellular processes. miRNAs present in body fluids can not only serve as key biomarkers for diagnostics and prognosis of human disorders but also contribute to cellular signaling offering new insights into pathological mechanisms. Here, we describe for the first time ZIKV-induced changes in miRNA plasma levels in patients during the acute and recovery phases of infection. We observed that during ZIKV acute infection, among the dysregulated miRNAs (DMs), the majority is with decreased levels when compared to convalescent and control patients. We used systems biology tools to build and highlight biological interactions between miRNAs and their multiple direct and indirect target molecules. Among the 24 DMs identified in ZIKV + patients, miR-146, miR-125a-5p, miR-30-5p, and miR-142-3p were related to signaling pathways modulated during infection and immune response. The results presented here are an effort to open new vistas for the key roles of miRNAs during ZIKV infection.

14.
Vet Comp Oncol ; 20(4): 752-766, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35698822

RESUMEN

Distinct thermal therapies have been used for cancer therapy. For hyperthermia (HT) treatment the tumour tissue is heated to temperatures between 39 and 45°C, while during ablation (AB) temperatures above 50°C are achieved. HT is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In contrast, AB is usually used as a single modality for direct tumour cell killing. Both thermal therapies have been shown to result in cytotoxicity as well as immune response stimulation. Immunogenic responses encompass the innate and adaptive immune systems and involve the activation of macrophages, dendritic cells, natural killer cells and T cells. Several heat technologies are used, but great interest arises from nanotechnology-based thermal therapies. Spontaneous tumours in dogs can be a model for cancer immunotherapies with several advantages. In addition, veterinary oncology represents a growing market with an important demand for new therapies. In this review, we will focus on nanoparticle-mediated thermal-induced immunogenic effects, the beneficial potential of integrating thermal nanomedicine with immunotherapies and the results of published works with thermotherapies for cancer using dogs with spontaneous tumours, highlighting the works that evaluated the effect on the immune system in order to show dogs with spontaneous cancer as a good model for evaluated the immunomodulatory effect of nanoparticle-mediated thermal therapies.


Asunto(s)
Enfermedades de los Perros , Hipertermia Inducida , Nanopartículas , Neoplasias , Perros , Animales , Terapia Combinada/veterinaria , Enfermedades de los Perros/radioterapia , Neoplasias/terapia , Neoplasias/veterinaria , Hipertermia Inducida/veterinaria , Hipertermia Inducida/métodos , Inmunidad , Nanopartículas/uso terapéutico
15.
Int. arch. otorhinolaryngol. (Impr.) ; 26(2): 208-212, Apr.-June 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1385092

RESUMEN

Abstract Introduction Palatine and pharyngeal tonsils are the first line of defense against pathogens. Clinically, two alterations may require surgical removal of the tonsils: hypertrophy and recurrent tonsillitis. The two conditions probably result from a dysfunction of the immune system. Objective To evaluate possible differences in the plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in patients submitted to adenotonsillectomy. Methods Prospective, longitudinal study with 25 children undergoing adenotonsillectomy separated into 3 different groups: recurrent tonsillitis (RT), composed of 7 patients; recurrent hypertrophy tonsillitis (RTTH), with 8 patients; and the tonsillar hypertrophy (TH) group, with 10 patients. Ten healthy control children (SD) were also included in the study. Peripheral blood was collected, and plasma was separated to measure the levels of TNF-α, IL-6, and IL-10. The Mann-Whitney test was used for statistical analysis. Results The plasma level of IL-6 was higher in the RT (p= 0.0394) and TH (p= 0.0009) groups, compared with the control group. The TH group also had higher levels of IL-6 than the RT group (p= 0.039). The IL-6/IL-10 ratio was higher in the RT (p= 0.029) and TH (p= 0.0005) groups compared with the control group. Between the RT and RTTH groups, the IL-6/IL-10 ratio was higher in the RT group, with a statistically significant difference (p= 0.0091). Conclusion Patients with a history of chronic tonsillitis had higher levels of IL-6, compared with the control group.

16.
Int Arch Otorhinolaryngol ; 26(2): e208-e212, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35602273

RESUMEN

Introduction Palatine and pharyngeal tonsils are the first line of defense against pathogens. Clinically, two alterations may require surgical removal of the tonsils: hypertrophy and recurrent tonsillitis. The two conditions probably result from a dysfunction of the immune system. Objective To evaluate possible differences in the plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) in patients submitted to adenotonsillectomy. Methods Prospective, longitudinal study with 25 children undergoing adenotonsillectomy separated into 3 different groups: recurrent tonsillitis (RT), composed of 7 patients; recurrent hypertrophy tonsillitis (RTTH), with 8 patients; and the tonsillar hypertrophy (TH) group, with 10 patients. Ten healthy control children (SD) were also included in the study. Peripheral blood was collected, and plasma was separated to measure the levels of TNF-α, IL-6, and IL-10. The Mann-Whitney test was used for statistical analysis. Results The plasma level of IL-6 was higher in the RT ( p = 0.0394) and TH ( p = 0.0009) groups, compared with the control group. The TH group also had higher levels of IL-6 than the RT group ( p = 0.039). The IL-6/IL-10 ratio was higher in the RT ( p = 0.029) and TH ( p = 0.0005) groups compared with the control group. Between the RT and RTTH groups, the IL-6/IL-10 ratio was higher in the RT group, with a statistically significant difference ( p = 0.0091). Conclusion Patients with a history of chronic tonsillitis had higher levels of IL-6, compared with the control group.

17.
Mycoses ; 65(7): 715-723, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35524507

RESUMEN

BACKGROUND: Data on the prevalence of chronic pulmonary aspergillosis (CPA) in patients with active or cured tuberculosis (TB) are scarce, mainly due to diagnostic difficulties. The diagnosis of CPA is based on pulmonary symptoms and chest computed tomography (CT) scans and is considered confirmed when there is microbiological or serological evidence of Aspergillus spp. OBJECTIVES: To estimate the prevalence of CPA in patients treated or undergoing treatment for PTB, seen in two referral hospitals in Mato Grosso do Sul, Brazil. PATIENTS AND METHODS: A total of 193 consecutive patients who were treated or previously treated for pulmonary tuberculosis underwent prospective evaluation: (a) clinical evaluation; (b) chest CT scan; (c) sputum examination-culture for fungi and smears for direct mycology; (d) detection of anti-Aspergillus fumigatus antibodies using an enzyme-linked immunosorbent assay Platelia® test; and (e) anti-Aspergillus spp. antibodies were assessed via a DID test. RESULTS: The global prevalence of CPA was 10.9% (95% confidence interval, 7.2%-16.1%), but it increased with the time of TB diagnosis. The variables independently associated with CPA were previous pulmonary tuberculosis over 4 years ago and haemoptysis. Cavities, pleural thickening and the presence of a fungal ball were the most frequent tomographic findings in patients with CPA. CONCLUSIONS: The high prevalence observed and its increase over time suggest the need for continuous surveillance of CPA in patients with active or previous pulmonary tuberculosis and throughout life, with clinical, tomographic and serological evaluations (ELISA) for a timely diagnosis and a better prognosis.


Asunto(s)
Aspergilosis Pulmonar , Tuberculosis Pulmonar , Tuberculosis , Aspergillus , Brasil/epidemiología , Enfermedad Crónica , Humanos , Infección Persistente , Prevalencia , Estudios Prospectivos , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/diagnóstico , Aspergilosis Pulmonar/epidemiología , Tuberculosis/complicaciones , Tuberculosis Pulmonar/complicaciones , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/epidemiología
18.
Int Immunopharmacol ; 108: 108697, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35405594

RESUMEN

Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.


Asunto(s)
COVID-19 , Monocitos , Biomarcadores/metabolismo , Humanos , Receptores de Lipopolisacáridos/metabolismo , Mitocondrias/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2 , Carga Viral
19.
J Clin Virol Plus ; 2(1): 100059, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35262032

RESUMEN

Background: COVID-19 pandemic continues to be a priority in public health worldwide, and factors inherent to SARS-CoV-2 pathogenesis and genomic characteristics are under study. Investigations that evaluate possible risk factors for infection, clinical manifestations, and viral shedding in different specimens also need to clarify possible associations with COVID-19 prognosis and disease outcomes. Study design: In this study, we evaluated SARS-CoV-2 positivity and estimated viral loads by real-time RT-PCR in stool, sera, and urine samples from 35 patients, with a positive SARS-CoV-2 RNA molecular test in respiratory sample, attended at a University COVID-19 referral hospital in Goiania, Goias, Brazil. Whole-genome sequencing was also performed in samples with higher viral load. Results: The positivity index was 51.43%, 14.28%, and 5.71% in stool, sera, and urine specimens, respectively. The median viral load was 8.01 × 106 GC/g, 2.03 × 106 GC/mL, and 1.36 × 105 GC/mL in stool, sera, and urine, respectivelly. Of all patients, 88.57% had previous comorbidities, and 48.39% of them had detectable SARS-CoV-2 RNA in at least one type of clinical specimen evaluated by this study (stool, sera or urine). A higher viral load was observed in patients with more than two previous comorbidities and that were classified as severe or critical conditions. Samples with the highest viral loads were sequenced and characterized as B.1.1.33 variant. Conclusion: We conclude that SARS-CoV-2 RNA is present in more than one type of clinical specimen during the infection, and that the most critical patients had detectable viral RNA in more than one clinical specimen at the same time point.

20.
Sci Rep ; 12(1): 53, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997041

RESUMEN

Zika virus (ZIKV) is an arbovirus from the Flaviviridae family and Flavivirus genus. Neurological events have been associated with ZIKV-infected individuals, such as Guillain-Barré syndrome, an autoimmune acute neuropathy that causes nerve demyelination and can induce paralysis. With the increase of ZIKV infection incidence in 2015, malformation and microcephaly cases in newborns have grown considerably, which suggested congenital transmission. Therefore, the development of an effective vaccine against ZIKV became an urgent need. Live attenuated vaccines present some theoretical risks for administration in pregnant women. Thus, we developed an in silico multiepitope vaccine against ZIKV. All structural and non-structural proteins were investigated using immunoinformatics tools designed for the prediction of CD4 + and CD8 + T cell epitopes. We selected 13 CD8 + and 12 CD4 + T cell epitopes considering parameters such as binding affinity to HLA class I and II molecules, promiscuity based on the number of different HLA alleles that bind to the epitopes, and immunogenicity. ZIKV Envelope protein domain III (EDIII) was added to the vaccine construct, creating a hybrid protein domain-multiepitope vaccine. Three high scoring continuous and two discontinuous B cell epitopes were found in EDIII. Aiming to increase the candidate vaccine antigenicity even further, we tested secondary and tertiary structures and physicochemical parameters of the vaccine conjugated to four different protein adjuvants: flagellin, 50S ribosomal protein L7/L12, heparin-binding hemagglutinin, or RS09 synthetic peptide. The addition of the flagellin adjuvant increased the vaccine's predicted antigenicity. In silico predictions revealed that the protein is a probable antigen, non-allergenic and predicted to be stable. The vaccine's average population coverage is estimated to be 87.86%, which indicates it can be administered worldwide. Peripheral Blood Mononuclear Cells (PBMC) of individuals with previous ZIKV infection were tested for cytokine production in response to the pool of CD4 and CD8 ZIKV peptide selected. CD4 + and CD8 + T cells showed significant production of IFN-γ upon stimulation and IL-2 production was also detected by CD8 + T cells, which indicated the potential of our peptides to be recognized by specific T cells and induce immune response. In conclusion, we developed an in silico universal vaccine predicted to induce broad and high-coverage cellular and humoral immune responses against ZIKV, which can be a good candidate for posterior in vivo validation.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Proteínas Virales/inmunología , Vacunas Virales/química , Vacunas Virales/inmunología , Virus Zika/inmunología , Adyuvantes Inmunológicos , Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Epítopos de Linfocito B/química , Epítopos de Linfocito T/química , Flagelina/inmunología , Humanos , Inmunidad Humoral , Inmunogenicidad Vacunal , Lectinas/inmunología , Leucocitos Mononucleares/inmunología , Péptidos/inmunología , Filogenia , Proteínas Ribosómicas/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/química , Virus Zika/química , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...