Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 126(1): 25-37, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32173732

RESUMEN

BACKGROUND AND AIMS: Carnivorous plants can enhance photosynthetic efficiency in response to prey nutrient uptake, but the underlying mechanisms of increased photosynthesis are largely unknown. Here we investigated photosynthesis in the pitcher plant Nepenthes × ventrata in response to different prey-derived and root mineral nutrition to reveal photosynthetic constrains. METHODS: Nutrient-stressed plants were irrigated with full inorganic solution or fed with four different insects: wasps, ants, beetles or flies. Full dissection of photosynthetic traits was achieved by means of gas exchange, chlorophyll fluorescence and immunodetection of photosynthesis-related proteins. Leaf biochemical and anatomical parameters together with mineral composition, nitrogen and carbon isotopic discrimination of leaves and insects were also analysed. KEY RESULTS: Mesophyll diffusion was the major photosynthetic limitation for nutrient-stressed Nepenthes × ventrata, while biochemistry was the major photosynthetic limitation after nutrient application. The better nutrient status of insect-fed and root-fertilized treatments increased chlorophyll, pigment-protein complexes and Rubisco content. As a result, both photochemical and carboxylation potential were enhanced, increasing carbon assimilation. Different nutrient application affected growth, and root-fertilized treatment led to the investment of more biomass in leaves instead of pitchers. CONCLUSIONS: The study resolved a 35-year-old hypothesis that carnivorous plants increase photosynthetic assimilation via the investment of prey-derived nitrogen in the photosynthetic apparatus. The equilibrium between biochemical and mesophyll limitations of photosynthesis is strongly affected by the nutrient treatment.


Asunto(s)
Carnivoría , Fotosíntesis , Animales , Dióxido de Carbono , Clorofila , Nutrientes , Compuestos Orgánicos , Hojas de la Planta
2.
BMC Evol Biol ; 20(1): 11, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969115

RESUMEN

BACKGROUND: The CO2-concentrating mechanism associated to Crassulacean acid metabolism (CAM) alters the catalytic context for Rubisco by increasing CO2 availability and provides an advantage in particular ecological conditions. We hypothesized about the existence of molecular changes linked to these particular adaptations in CAM Rubisco. We investigated molecular evolution of the Rubisco large (L-) subunit in 78 orchids and 144 bromeliads with C3 and CAM photosynthetic pathways. The sequence analyses were complemented with measurements of Rubisco kinetics in some species with contrasting photosynthetic mechanism and differing in the L-subunit sequence. RESULTS: We identified potential positively selected sites and residues with signatures of co-adaptation. The implementation of a decision tree model related Rubisco specific variable sites to the leaf carbon isotopic composition of the species. Differences in the Rubisco catalytic traits found among C3 orchids and between strong CAM and C3 bromeliads suggested Rubisco had evolved in response to differing CO2 concentration. CONCLUSIONS: The results revealed that the variability in the Rubisco L-subunit sequence in orchids and bromeliads is composed of coevolving sites under potential positive adaptive signal. The sequence variability was related to δ13C in orchids and bromeliads, however it could not be linked to the variability found in the kinetic properties of the studied species.


Asunto(s)
Bromeliaceae/enzimología , Carbono/metabolismo , Evolución Molecular , Orchidaceae/enzimología , Ribulosa-Bifosfato Carboxilasa/genética , Adaptación Fisiológica , Isótopos de Carbono/metabolismo , Cinética , Fotosíntesis , Filogenia , Hojas de la Planta/genética , Subunidades de Proteína/metabolismo , Selección Genética
3.
J Exp Bot ; 68(11): 2871-2883, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28830100

RESUMEN

Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula.


Asunto(s)
Caryophyllaceae/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Poaceae/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Regiones Antárticas , Carbono/metabolismo , Clima Frío , Células del Mesófilo/metabolismo , Hojas de la Planta/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...