Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ital J Dermatol Venerol ; 158(3): 180-189, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37278496

RESUMEN

INTRODUCTION: Line-field confocal optical coherence tomography (LC-OCT) is a recently introduced, non-invasive skin imaging technique combining the technical advantages of reflectance confocal microscopy and conventional OCT in terms of isotropic resolution and in-tissue penetration. Several studies have been published so far about the use of LC-OCT in melanocytic and non-melanocytic skin tumors. The aim of this review was to summarize the currently available data on the use of LC-OCT for benign and malignant melanocytic and non-melanocytic skin tumors. EVIDENCE ACQUISITION: We searched scientific databases for any literature published up to 30th April 2023 and concerning the use of LC-OCT for melanocytic and non-melanocytic skin tumors. Identified papers were evaluated, and relevant information was extracted. EVIDENCE SYNTHESIS: A total of 29 studies were found including original articles, short reports, and letters to the Editor: 6 applied to melanocytic skin tumors, 22 to non-melanocytic skin tumors and 1 to both. The use of LC-OCT increased the diagnostic accuracy for melanocytic and non-melanocytic skin lesions. The highest diagnostic performance was found for basal cell carcinoma (BCC), but significant improvements in the diagnostic accuracy were also detected for the differentiation of actinic keratosis (AK) from squamous cell carcinoma (SCC) and of melanoma from nevi. The LC-OCT features of other skin tumors were also described and successfully correlated with histopathology. CONCLUSIONS: LC-OCT proved to increase the diagnostic accuracy for melanocytic and non-melanocytic skin lesions, thanks to the combination of high resolution/penetration, 3D reconstructions, and integrated dermoscopy. Although BCC seems the most suitable tumors for LC-OCT examination, the device is extremely performant for the differentiation of AK from SCC and the discrimination of melanoma from nevi as well. Additional studies on diagnostic performance and new investigations about the presurgical assessment of tumor margins with LC-OCT and its association with human and artificial intelligence algorithms are in progress.


Asunto(s)
Carcinoma Basocelular , Carcinoma de Células Escamosas , Queratosis Actínica , Melanoma , Nevo , Neoplasias Cutáneas , Humanos , Tomografía de Coherencia Óptica/métodos , Inteligencia Artificial , Neoplasias Cutáneas/diagnóstico por imagen , Melanoma/diagnóstico por imagen , Queratosis Actínica/diagnóstico por imagen , Queratosis Actínica/patología , Carcinoma Basocelular/diagnóstico por imagen , Carcinoma de Células Escamosas/diagnóstico por imagen
3.
J Biophotonics ; 15(2): e202100236, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34608756

RESUMEN

Epidermal three-dimensional (3D) topography/quantification has not been completely characterized yet. The recently developed line-field confocal optical coherence tomography (LC-OCT) provides real-time, high-resolution, in-vivo 3D imaging of the skin. This pilot study aimed at quantifying epidermal metrics (epidermal thicknesses, dermal-epidermal junction [DEJ] undulation and keratinocyte number/shape/size) using 3D LC-OCT. For each study participant (8 female, skin-type-II, younger/older volunteers), seven body sites were imaged with LC-OCT. Epidermal metrics were calculated by segmentations and measurements assisted by artificial intelligence (AI) when appropriate. Thicknesses of epidermis/SC, DEJ undulation and keratinocyte nuclei volume varied across body sites. Evidence of keratinocyte maturation was observed in vivo: keratinocyte nuclei being small/spherical near the DEJ and flatter/elliptical near the skin surface. Skin microanatomy can be quantified by combining LC-OCT and AI. This technology could be highly relevant to understand aging processes and conditions linked to epidermal disorders. Future clinical/research applications are to be expected in this scenario.


Asunto(s)
Inteligencia Artificial , Tomografía de Coherencia Óptica , Epidermis/diagnóstico por imagen , Femenino , Humanos , Proyectos Piloto , Piel , Tomografía de Coherencia Óptica/métodos
4.
J Biophotonics ; 14(5): e202000449, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583143

RESUMEN

Autoimmune bullous diseases (AIBDs) still represent a considerable a source of morbidity and mortality: early identification of a specific AIBD is often difficult due to overlapping clinical and/or laboratory features and time-consuming invasive laboratory tests. We aimed to investigate the potential role of a new imaging technology, line-field confocal optical coherence tomography (LC-OCT), in the non-invasive diagnosis of AIBDs. LC-OCT was performed at lesional, perilesional and contralateral healthy sites in 30 patients, before histology and direct immunofluorescence. LC-OCT examination was able to identify the level of split (subcorneal/suprabasal/subepidermal/sublamina densa), to provide detailed images of the bulla roof morphology and content (eg, erythrocytes/acantholytic cells/polymorphonucleates). Areas of intra/subepidermal detachment were also detected also at clinically normal perilesional skin sites. LC-OCT can support physicians, real time and at bed-site, in the differential diagnosis of various AIBDs and their mimickers. Moreover, it can be used for the identification of subclinical lesions and therapy tapering.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Cutáneas Vesiculoampollosas , Enfermedades Autoinmunes/diagnóstico por imagen , Diagnóstico Diferencial , Técnicas Histológicas , Humanos , Enfermedades Cutáneas Vesiculoampollosas/diagnóstico por imagen , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...