Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transplant Direct ; 10(4): e1609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38481967

RESUMEN

Background: Brief normothermic machine perfusion is increasingly used to assess and recondition grafts before transplant. During normothermic machine perfusion, metabolic activity is typically maintained using red blood cell (RBC)-based solutions. However, the utilization of RBCs creates important logistical constraints. This study explored the feasibility of human kidney normothermic perfusion using William's E-based perfusate with no additional oxygen carrier. Methods: Sixteen human kidneys declined for transplant were perfused with a perfusion solution containing packed RBCs or William's E medium only for 6 h using a pressure-controlled system. The temperature was set at 37 °C. Renal artery resistance, oxygen extraction, metabolic activity, energy metabolism, and histological features were evaluated. Results: Baseline donor demographics were similar in both groups. Throughout perfusion, kidneys perfused with William's E exhibited improved renal flow (P = 0.041) but similar arterial resistance. Lactic acid levels remained higher in kidneys perfused with RBCs during the first 3 h of perfusion but were similar thereafter (P = 0.95 at 6 h). Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding oxygen consumption (P = 0.41) and reconstitution of ATP tissue concentration (P = 0.55). Similarly, nicotinamide adenine dinucleotide levels were preserved during perfusion. There was no evidence of histological damage caused by either perfusate. Conclusions: In human kidneys, William's E medium provides a logistically convenient, off-the-shelf alternative to packed RBCs for up to 6 h of normothermic machine perfusion.

2.
Int J Angiol ; 32(4): 262-268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927847

RESUMEN

This case study describes a 45-year-old Caucasian male with a past medical history of obesity, hypertension, and non-insulin-dependent diabetes mellitus, who in the setting of coronavirus disease 2019 (COVID-19) pneumonia, developed portal vein thrombosis (PVT) presenting as an acute abdomen after hospital discharge from a cholecystitis episode. PVT is a very infrequent thromboembolic condition, classically occurring in patients with systemic conditions such as cirrhosis, malignancy, pancreatitis, diverticulitis, autoimmunity, and thrombophilia. PVT can cause serious complications, such as intestinal infarction, or even death, if not promptly treated. Due to the limited number of reports in the literature describing PVT in the COVID-19 setting, its prevalence, natural history, mechanism, and precise clinical features remain unknown. Therefore, clinical suspicion should be high for PVT, in any COVID-19 patient who presents with abdominal pain or associated signs and symptoms. To the best of our knowledge, this is the first report of COVID-19-associated PVT causing extensive thrombosis in the portal vein and its right branch, occurring in the setting of early-stage cirrhosis after a preceding episode of cholecystitis.

3.
J Clin Med ; 9(1)2020 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-31963739

RESUMEN

Ex situ machine perfusion is a promising technology to help improve organ viability prior to transplantation. However, preclinical studies using discarded human livers to evaluate therapeutic interventions and optimize perfusion conditions are limited by significant graft heterogeneity. In order to improve the efficacy and reproducibility of future studies, a split-liver perfusion model was developed to allow simultaneous perfusion of left and right lobes, allowing one lobe to serve as a control for the other. Eleven discarded livers were surgically split, and both lobes perfused simultaneously on separate perfusion devices for 3 h at subnormothermic temperatures. Lobar perfusion parameters were also compared with whole livers undergoing perfusion. Similar to whole-liver perfusions, each lobe in the split-liver model exhibited a progressive decrease in arterial resistance and lactate levels throughout perfusion, which were not significantly different between right and left lobes. Split liver lobes also demonstrated comparable energy charge ratios. Ex situ split-liver perfusion is a novel experimental model that allows each graft to act as its own control. This model is particularly well suited for preclinical studies by avoiding the need for large numbers of enrolled livers necessary due to the heterogenous nature of discarded human liver research.

4.
PLoS One ; 15(1): e0228011, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31978172

RESUMEN

There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.


Asunto(s)
Hígado Graso/metabolismo , Lipidómica , Metabolómica , Perfusión , Resucitación , Temperatura , Adenosina Trifosfato/biosíntesis , Ácidos y Sales Biliares/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/patología , Hígado Graso/fisiopatología , Glucosa/metabolismo , Hemodinámica , Humanos , Hígado/patología , Hígado/fisiopatología , Pruebas de Función Hepática , Oxidación-Reducción , Estrés Oxidativo , Resistencia Vascular
5.
Am J Transplant ; 19(10): 2814-2824, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30938927

RESUMEN

Normothermic machine perfusion presents a novel platform for pretransplant assessment and reconditioning of kidney grafts. Maintaining the metabolic activity of a preserved graft at physiologic levels requires an adequate oxygen supply, typically delivered by crystalloid solutions supplemented with red blood cells. In this study, we explored the feasibility of using a synthetic hemoglobin-based oxygen carrier (HBOC) in human kidney normothermic perfusion. Fourteen discarded human kidneys were perfused for 6 hours at a mean temperature of 37°C using a pressure-controlled system. Kidneys were perfused with a perfusion solution supplemented with either HBOC (n = 7) or packed red blood cells (PRBC) (n = 7) to increase oxygen-carrying capacity. Renal artery resistance, oxygen extraction, metabolic activity, energy stores, and histological features were evaluated. Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding vascular flow (P = .66), oxygen consumption (P = .88), and reconstitution of tissue adenosine triphosphate (P = .057). Lactic acid levels were significantly higher in kidneys perfused with PRBC (P = .007). Histological findings were comparable between groups, and there was no evidence of histological damage caused by the HBOC. This feasibility experiment demonstrates that a HBOC solution can offer a logistically more convenient off-the-shelf alternative to PRBC in normothermic machine perfusion of human kidneys.


Asunto(s)
Sustitutos Sanguíneos/farmacología , Hemoglobinas/farmacología , Riñón/efectos de los fármacos , Soluciones Preservantes de Órganos/química , Preservación de Órganos/métodos , Oxígeno/metabolismo , Daño por Reperfusión/prevención & control , Adulto , Anciano , Células Cultivadas , Eritrocitos/química , Circulación Extracorporea , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Consumo de Oxígeno , Perfusión , Supervivencia Tisular , Recolección de Tejidos y Órganos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...