Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-19965156

RESUMEN

The purpose of this study is to investigate the potential of the ensemble empirical mode decomposition (EEMD) to extract cardiogenic oscillations from inductive plethysmography signals in order to measure cardiac stroke volume. First, a simple cardio-respiratory model is used to simulate cardiac, respiratory, and cardio-respiratory signals. Second, application of empirical mode decomposition (EMD) to simulated cardio-respiratory signals demonstrates that the mode mixing phenomenon affects the extraction performance and hence also the cardiac stroke volume measurement. Stroke volume is measured as the amplitude of extracted cardiogenic oscillations, and it is compared to the stroke volume of simulated cardiac activity. Finally, we show that the EEMD leads to mode mixing removal.


Asunto(s)
Pletismografía/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Ingeniería Biomédica/métodos , Simulación por Computador , Frecuencia Cardíaca , Humanos , Modelos Estadísticos , Oscilometría/métodos , Respiración , Volumen Sistólico , Factores de Tiempo
2.
Philos Trans A Math Phys Eng Sci ; 366(1878): 3175-97, 2008 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-18565814

RESUMEN

We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable. As a first prototype implementation in this environment, we describe a core model of human physiology targeting the short- and long-term regulation of blood pressure, body fluids and homeostasis of the major solutes. In tandem with the development of the core models, the project involves database implementation and ontology development.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Fisiología , Equilibrio Ácido-Base/fisiología , Presión Sanguínea/fisiología , Líquidos Corporales/fisiología , Homeostasis , Humanos , Bases del Conocimiento , Modelos Cardiovasculares , Biología de Sistemas
3.
Artículo en Inglés | MEDLINE | ID: mdl-18003550

RESUMEN

We present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods. The basic core model will give succinct input-output (reduced-dimension) descriptions of all relevant organ systems and regulatory processes, and it will be modular, multi-resolution, and extensible, in the sense that detailed submodules of any process(es) can be "plugged-in" to the basic model in order to explore, eg. system-level implications of local perturbations. The goal is to keep the basic core model compact enough to insure fast execution time (in view of eventual use in the clinic) and yet to allow elaborate detailed modules of target tissues or organs in order to focus on the problem area while maintaining the system-level regulatory compensations.


Asunto(s)
Presión Sanguínea/fisiología , Líquidos Corporales/fisiología , Modelos Biológicos , Animales , Fenómenos Fisiológicos Cardiovasculares , Homeostasis , Humanos , Riñón/fisiología , Fenómenos Fisiológicos Respiratorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA