Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 100: 104960, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232633

RESUMEN

BACKGROUND: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS: Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS: Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION: Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING: Full list of funders is provided at the end of the manuscript.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Femenino , Epítopos , Pandemias , Inteligencia Artificial , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Mesocricetus
2.
Nat Commun ; 13(1): 6644, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333374

RESUMEN

Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.


Asunto(s)
COVID-19 , Vacunas Virales , Vacuna contra la Fiebre Amarilla , Cricetinae , Animales , Humanos , SARS-CoV-2/genética , Vacunas Virales/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
3.
J Virol ; 96(16): e0075822, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35924921

RESUMEN

Ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lacks the intrinsic ability to bind to the mouse ACE2 receptor, and therefore establishment of SARS-CoV-2 mouse models has been limited to the use of mouse-adapted viruses or genetically modified mice. Interestingly, some of the variants of concern, such as the Beta B.1.351 variant, show an improved binding to the mouse receptor and hence better replication in different wild-type (WT) mouse species. Here, we describe the establishment of a SARS-CoV-2 Beta B.1.351 variant infection model in male SCID mice as a tool to assess the antiviral efficacy of potential SARS-CoV-2 small-molecule inhibitors. Intranasal infection of male SCID mice with 105 50% tissue culture infective doses (TCID50) of the Beta B.1.351 variant resulted in high viral loads in the lungs and moderate signs of lung pathology on day 3 postinfection. Treatment of infected mice with the antiviral drugs molnupiravir (200 mg/kg, twice a day [BID]) or nirmatrelvir (300 mg/kg, BID) for 3 consecutive days significantly reduced the infectious virus titers in the lungs by 2 and 3.9 log10 TCID50/mg of tissue, respectively, and significantly improved lung pathology. Together, these data demonstrate the validity of this SCID mouse Beta B.1.351 variant infection model as a convenient preclinical model for assessment of potential activity of antivirals against SARS-CoV-2. IMPORTANCE Unlike the ancestral SARS-CoV-2 strain, the Beta (B.1.351) variant of concern has been reported to replicate to some extent in WT mice (C57BL/6 and BALB/c). We demonstrate here that infection of SCID mice with the Beta variant resulted in high viral loads in the lungs on day 3 postinfection. Treatment of infected mice with molnupiravir or nirmatrelvir for 3 consecutive days markedly reduced the infectious virus titers in the lungs and improved lung pathology. The SARS-CoV2 SCID mouse infection model, which is ideally suited for antiviral studies, offers an advantage in comparison to other SARS-CoV2 mouse models, in that there is no need for the use of mouse-adapted virus strains or genetically modified mice. Mouse models also have advantages over hamster models because (i) lower amounts of test drugs are needed, (ii) more animals can be housed in a cage, and (iii) reagents to analyze mouse samples are more readily available than those for hamsters.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , ARN Viral
4.
Microorganisms ; 10(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014057

RESUMEN

In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.

5.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879526

RESUMEN

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Microscopía por Crioelectrón , Epítopos , Haplorrinos , Humanos , Glicoproteínas de Membrana , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
6.
Mol Ther ; 30(9): 2968-2983, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35450821

RESUMEN

Self-amplifying RNA vaccines may induce equivalent or more potent immune responses at lower doses compared to non-replicating mRNA vaccines via amplified antigen expression. In this paper, we demonstrate that 1 µg of an LNP-formulated dual-antigen self-amplifying RNA vaccine (ZIP1642), encoding both the S-RBD and N antigen, elicits considerably higher neutralizing antibody titers against Wuhan-like Beta B.1.351 and Delta B.1.617.2 SARS-CoV-2 variants compared to those of convalescent patients. In addition, ZIP1642 vaccination in mice expanded both S- and N-specific CD3+CD4+ and CD3+CD8+ T cells and caused a Th1 shifted cytokine response. We demonstrate that the induction of such dual antigen-targeted cell-mediated immune response may provide better protection against variants displaying highly mutated Spike proteins, as infectious viral loads of both Wuhan-like and Beta variants were decreased after challenge of ZIP1642 vaccinated hamsters. Supported by these results, we encourage redirecting focus toward the induction of multiple antigen-targeted cell-mediated immunity in addition to neutralizing antibody responses to bypass waning antibody responses and attenuate infectious breakthrough and disease severity of future SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Cricetinae , Humanos , Inmunidad Celular , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , ARN , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
7.
Antiviral Res ; 202: 105311, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35390430

RESUMEN

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones por VIH , Inhibidores de la Proteasa del VIH , Animales , Cricetinae , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Proteasa del VIH/farmacología , Inhibidores de la Proteasa del VIH/uso terapéutico , Lopinavir/farmacología , Lopinavir/uso terapéutico , Pulmón , Mesocricetus , Nelfinavir/farmacología , Nelfinavir/uso terapéutico , ARN Viral , Ritonavir/uso terapéutico , SARS-CoV-2
8.
Microorganisms ; 10(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336208

RESUMEN

Ivermectin, an FDA-approved antiparasitic drug, has been reported to have in vitro activity against SARS-CoV-2. Increased off-label use of ivermectin for COVID-19 has been reported. We here assessed the effect of ivermectin in Syrian hamsters infected with the SARS-CoV-2 Beta (B.1.351) variant. Infected animals received a clinically relevant dose of ivermectin (0.4 mg/kg subcutaneously dosed) once daily for four consecutive days after which the effect was quantified. Ivermectin monotherapy did not reduce lung viral load and even significantly worsened SARS-CoV-2-induced lung pathology. Additionally, it did not potentiate the activity of molnupiravir (LagevrioTM) when combined with this drug. This study contributes to the growing body of evidence that ivermectin does not result in a beneficial effect in the treatment of COVID-19. These findings are important given the increasing, dangerous off-label use of ivermectin for the treatment of COVID-19.

9.
Nat Commun ; 13(1): 719, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169114

RESUMEN

There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Lactamas/administración & dosificación , Leucina/administración & dosificación , Nitrilos/administración & dosificación , Prolina/administración & dosificación , SARS-CoV-2/efectos de los fármacos , Inhibidores de Proteasa Viral/administración & dosificación , Células A549 , Administración Oral , Animales , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Cricetinae , Humanos , Lactamas/farmacocinética , Leucina/farmacocinética , Mesocricetus , Nitrilos/farmacocinética , Prolina/farmacocinética , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Células Vero , Inhibidores de Proteasa Viral/farmacocinética , Replicación Viral/efectos de los fármacos
10.
Antiviral Res ; 198: 105253, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35066015

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the ancestral strain and the other SARS-CoV-2 VoCs replicate efficiently in and cause a COVID19-like pathology in Syrian hamsters. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain in the hamster model. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infected hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia.


Asunto(s)
COVID-19/veterinaria , Modelos Animales de Enfermedad , SARS-CoV-2/crecimiento & desarrollo , Animales , Cricetinae , Humanos , Pulmón/virología , Mesocricetus/virología , Especificidad de la Especie , Carga Viral
11.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34609205

RESUMEN

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Modelos Animales , SARS-CoV-2
12.
Cell Rep ; 37(2): 109814, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599871

RESUMEN

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Asunto(s)
Anticuerpos ampliamente neutralizantes/uso terapéutico , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Cricetinae , Modelos Animales de Enfermedad , Epítopos/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Pruebas de Neutralización , Unión Proteica/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Relación Estructura-Actividad , Vacunación
13.
EBioMedicine ; 72: 103595, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34571361

RESUMEN

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Asunto(s)
Amidas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Hidroxilaminas/uso terapéutico , Pulmón/virología , Pirazinas/uso terapéutico , Amidas/farmacología , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/transmisión , Citidina/farmacología , Citidina/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Hidroxilaminas/farmacología , Mesocricetus , Pirazinas/farmacología , ARN Viral , Resultado del Tratamiento , Carga Viral
14.
J Infect Dis ; 224(5): 749-753, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34244768

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. Currently available monoclonal antibodies and vaccines appear to have reduced efficacy against some of these VoCs. Antivirals targeting conserved proteins of SARS-CoV-2 are unlikely to be affected by mutations arising in VoCs and should therefore be effective against emerging variants. We here investigate the efficacy of molnupiravir, currently in phase 2 clinical trials, in hamsters infected with Wuhan strain or B.1.1.7 and B.1.351 variants. Molnupiravir proved to be effective against infections with each of the variants and therefore may have potential combating current and future emerging VoCs.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Citidina , Hidroxilaminas , SARS-CoV-2 , Replicación Viral , Animales , Cricetinae , Femenino , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Citidina/análogos & derivados , Citidina/farmacología , Modelos Animales de Enfermedad , Hidroxilaminas/farmacología , Mutación/efectos de los fármacos , Pandemias/prevención & control , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Replicación Viral/efectos de los fármacos
15.
EBioMedicine ; 68: 103403, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34049240

RESUMEN

BACKGROUND: Within one year after its emergence, more than 108 million people acquired SARS-CoV-2 and almost 2·4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the United Kingdom, UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1) variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics. METHODS: We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 variants in female Syrian golden hamsters to assess their relative infectivity and virulence in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. FINDINGS: A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. INTERPRETATION: We established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC. FUNDING: Stated in the acknowledgment.


Asunto(s)
COVID-19/patología , Citocinas/genética , Sistema Respiratorio/virología , SARS-CoV-2/patogenicidad , Animales , COVID-19/diagnóstico por imagen , COVID-19/genética , Modelos Animales de Enfermedad , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mesocricetus , Sistema Respiratorio/diagnóstico por imagen , Sistema Respiratorio/patología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Virulencia , Microtomografía por Rayos X
16.
Biochem Biophys Res Commun ; 555: 134-139, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33813272

RESUMEN

There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns. ALG-097111 potently inhibited SARS-CoV-2 3CLpro (IC50 = 7 nM) without affecting the activity of human cathepsin L (IC50 > 10 µM). When ALG-097111 was dosed in hamsters challenged with SARS-CoV-2, a robust and significant 3.5 log10 (RNA copies/mg) reduction of the viral RNA copies and 3.7 log10 (TCID50/mg) reduction in the infectious virus titers in the lungs was observed. These results provide the first in vivo validation for the SARS-CoV-2 3CLpro as a promising therapeutic target for selective small molecule inhibitors.


Asunto(s)
Amidas/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Modelos Animales de Enfermedad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Amidas/farmacocinética , Animales , COVID-19/virología , Catepsina L/antagonistas & inhibidores , Línea Celular , Cricetinae , Inhibidores de Cisteína Proteinasa/farmacocinética , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , Mesocricetus/virología , Reproducibilidad de los Resultados , SARS-CoV-2/crecimiento & desarrollo , Serina Endopeptidasas , Especificidad por Sustrato , Replicación Viral/efectos de los fármacos
17.
mBio ; 9(5)2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30301850

RESUMEN

New drugs are needed to control the current tuberculosis (TB) pandemic caused by infection with Mycobacterium tuberculosis We report here on our work with AX-35, an arylvinylpiperazine amide, and four related analogs, which are potent antitubercular agents in vitro All five compounds showed good activity against M. tuberculosisin vitro and in infected THP-1 macrophages, while displaying only mild cytotoxicity. Isolation and characterization of M. tuberculosis-resistant mutants to the arylvinylpiperazine amide derivative AX-35 revealed mutations in the qcrB gene encoding a subunit of cytochrome bc1 oxidase, one of two terminal oxidases of the electron transport chain. Cross-resistance studies, allelic exchange, transcriptomic analyses, and bioenergetic flux assays provided conclusive evidence that the cytochrome bc1-aa3 is the target of AX-35, although the compound appears to interact differently with the quinol binding pocket compared to previous QcrB inhibitors. The transcriptomic and bioenergetic profiles of M. tuberculosis treated with AX-35 were similar to those generated by other cytochrome bc1 oxidase inhibitors, including the compensatory role of the alternate terminal oxidase cytochrome bd in respiratory adaptation. In the absence of cytochrome bd oxidase, AX-35 was bactericidal against M. tuberculosis Finally, AX-35 and its analogs were active in an acute mouse model of TB infection, with two analogs displaying improved activity over the parent compound. Our findings will guide future lead optimization to produce a drug candidate for the treatment of TB and other mycobacterial diseases, including Buruli ulcer and leprosy.IMPORTANCE New drugs against Mycobacterium tuberculosis are urgently needed to deal with the current global TB pandemic. We report here on the discovery of a series of arylvinylpiperazine amides (AX-35 to AX-39) that represent a promising new family of compounds with potent in vitro and in vivo activities against M. tuberculosis AX compounds target the QcrB subunit of the cytochrome bc1 terminal oxidase with a different mode of interaction compared to those of known QcrB inhibitors. This study provides the first multifaceted validation of QcrB inhibition by recombineering-mediated allelic exchange, gene expression profiling, and bioenergetic flux studies. It also provides further evidence for the compensatory role of cytochrome bd oxidase upon QcrB inhibition. In the absence of cytochrome bd oxidase, AX compounds are bactericidal, an encouraging property for future antimycobacterial drug development.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Piperazinas/farmacología , Tuberculosis/tratamiento farmacológico , Amidas/farmacología , Amidas/uso terapéutico , Animales , Línea Celular , Complejo III de Transporte de Electrones/metabolismo , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Tuberculosis/microbiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-30012754

RESUMEN

Macozinone (MCZ) is a tuberculosis (TB) drug candidate that specifically targets the essential flavoenzyme DprE1, thereby blocking synthesis of the cell wall precursor decaprenyl phosphoarabinose (DPA) and provoking lysis of Mycobacterium tuberculosis As part of the MCZ backup program, we exploited structure-guided drug design to produce a new series of sulfone-containing derivatives, 2-sulfonylpiperazin 8-nitro 6-trifluoromethyl 1,3-benzothiazin-4-one, or sPBTZ. These compounds are less active than MCZ but have a better solubility profile, and some derivatives display enhanced stability in microsomal assays. DprE1 was efficiently inhibited by sPBTZ, and covalent adducts with the active-site cysteine residue (C387) were formed. However, despite the H-bonding potential of the sulfone group, no additional bonds were seen in the crystal structure of the sPBTZ-DprE1 complex with compound 11326127 compared to MCZ. Compound 11626091, the most advanced sPBTZ, displayed good antitubercular activity in the murine model of chronic TB but was less effective than MCZ. Nonetheless, further testing of this MCZ backup compound is warranted as part of combination treatment with other TB drugs.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Piridazinas/farmacología , Sulfonas/farmacología , Proteínas Bacterianas , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Tuberculosis/microbiología
19.
Drug Discov Today ; 22(3): 526-533, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27666194

RESUMEN

The flavoenzyme DprE1 catalyses a crucial step in arabinan production for cell wall biosynthesis in Mycobacterium tuberculosis and is a highly vulnerable drug target. It was first discovered using benzothiazinones (BTZ): exquisitely potent bactericidal agents that are being developed as drugs to treat tuberculosis. Subsequently, many compounds with diverse scaffolds were found to act as either covalent or noncovalent DprE1 inhibitors. Covalent inhibitors, like the BTZ, are all nitroaromatic compounds that serve as suicide substrates after DprE1-mediated nitroreduction. Here, we describe how high-resolution structures of DprE1, alone and in complex with various ligands, explain enzyme activity and inhibition.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/química , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Oxidorreductasas de Alcohol/metabolismo , Animales , Antituberculosos/uso terapéutico , Proteínas Bacterianas/metabolismo , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Conformación Proteica , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...