Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(2): 626-640, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396236

RESUMEN

Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.


Asunto(s)
Giberelinas , Nodulación de la Raíz de la Planta , Nodulación de la Raíz de la Planta/fisiología , Citocininas , Ácidos Indolacéticos/farmacología , Pisum sativum/genética , Hormonas , Regulación de la Expresión Génica de las Plantas , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell Physiol ; 65(1): 107-119, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37874980

RESUMEN

Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.


Asunto(s)
Micorrizas , Solanum lycopersicum , Micorrizas/fisiología , Solanum lycopersicum/genética , Raíces de Plantas/metabolismo , Simbiosis/genética , Péptidos/metabolismo
3.
Plant Sci ; 321: 111308, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696908

RESUMEN

The Heirloom Golden tangerine tomato fruit variety is highly nutritious due to accumulation of tetra-cis-lycopene, that has a higher bioavailability and recognised health benefits in treating anti-inflammatory diseases compared to all-trans-lycopene isomers found in red tomatoes. We investigated if photoisomerization of tetra-cis-lycopene occurs in roots of the MicroTom tangerine (tangmic) tomato and how this affects root to shoot biomass, mycorrhizal colonization, abscisic acid accumulation, and responses to drought. tangmic plants grown in soil under glasshouse conditions displayed a reduction in height, number of flowers, fruit yield, and root length compared to wild-type (WT). Soil inoculation with Rhizophagus irregularis revealed fewer arbuscules and other fungal structures in the endodermal cells of roots in tangmic relative to WT. The roots of tangmic hyperaccumulated acyclic cis-carotenes, while only trace levels of xanthophylls and abscisic acid were detected. In response to a water deficit, leaves from the tangmic plants displayed a rapid decline in maximum quantum yield of photosystem II compared to WT, indicating a defective root to shoot signalling response to drought. The lack of xanthophylls biosynthesis in tangmic roots reduced abscisic acid levels, thereby likely impairing endomycorrhizal colonisation and drought-induced root to shoot signalling.


Asunto(s)
Citrus , Micorrizas , Solanum lycopersicum , Ácido Abscísico , Carotenoides , Citrus/química , Sequías , Licopeno , Solanum lycopersicum/química , Suelo , Xantófilas
4.
Plant Commun ; 3(5): 100327, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35605199

RESUMEN

Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.


Asunto(s)
Fabaceae , Rhizobium , Etilenos/metabolismo , Hormonas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Rhizobium/metabolismo , Simbiosis
5.
Methods Mol Biol ; 2309: 179-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028687

RESUMEN

Strigolactones play a potent role in the rhizosphere as a signal to symbiotic microbes including arbuscular mycorrhizal fungi and rhizobial bacteria. This chapter outlines guidelines for application of strigolactones to pea roots to influence symbiotic relationships, and includes careful consideration of type of strigolactones applied, solvent use, frequency of application and nutrient regime to optimize experimental conditions.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Pisum sativum/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Nodulación de la Raíz de la Planta/efectos de los fármacos , Raíces de Plantas/microbiología , Rhizobium leguminosarum/efectos de los fármacos , Bioensayo , Rhizobium leguminosarum/crecimiento & desarrollo , Simbiosis
6.
Plant Sci ; 305: 110846, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33691972

RESUMEN

Legume nodules are a unique plant organ that contain nitrogen-fixing rhizobial bacteria. For this interaction to be mutually beneficial, plant and bacterial metabolism must be precisely co-ordinated. Plant hormones are known to play essential roles during the establishment of legume-rhizobial symbioses but their role in subsequent nodule metabolism has not been explored in any depth. The plant hormones brassinosteroids, ethylene and gibberellins influence legume infection, nodule number and in some cases nodule function. In this paper, the influence of these hormones on nodule metabolism was examined in a series of well characterised pea mutants with altered hormone biosynthesis or response. A targeted set of metabolites involved in nutrient exchange and nitrogen fixation was examined in nodule tissue of mutant and wild type plants. Gibberellin-deficiency had a major negative impact on the level of several major dicarboxylates supplied to rhizobia by the plant and also led to a significant deficit in the amino acids involved in glutamine-aspartate transamination, consistent with the limited bacteroid development and low fixation rate of gibberellin-deficient na mutant nodules. In contrast, no major effects of brassinosteroid-deficiency or ethylene-insensitivity on the key metabolites in these pathways were found. Therefore, although all three hormones influence infection and nodule number, only gibberellin is important for the establishment of a functional nodule metabolome.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Pisum sativum/genética , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nodulación de la Raíz de la Planta/efectos de los fármacos , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/efectos de los fármacos , Brasinoesteroides/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Giberelinas/metabolismo , Mutación , Pisum sativum/microbiología , Rhizobium/fisiología
7.
J Exp Bot ; 72(5): 1702-1713, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33186449

RESUMEN

Plants form mutualistic nutrient-acquiring symbioses with microbes, including arbuscular mycorrhizal fungi. The formation of these symbioses is costly, and plants employ a negative feedback loop termed autoregulation of mycorrhizae (AOM) to limit formation of arbuscular mycorrhizae (AM). We provide evidence for the role of one leucine-rich repeat receptor-like kinase (FAB), a hydroxyproline O-arabinosyltransferase enzyme (FIN), and additional evidence for one receptor-like protein (SlCLV2) in the negative regulation of AM formation in tomato. Reciprocal grafting experiments suggest that the FAB gene acts locally in the root, while the SlCLV2 gene may act in both the root and the shoot. External nutrients including phosphate and nitrate can also strongly suppress AM formation. We found that FAB and FIN are required for nitrate suppression of AM but are not required for the powerful suppression of AM colonization by phosphate. This parallels some of the roles of legume homologues in the autoregulation of the more recently evolved symbioses with nitrogen-fixing bacteria leading to nodulation. This deep homology in the symbiotic role of these genes suggests that in addition to the early signalling events that lead to the establishment of AM and nodulation, the autoregulation pathway might also be considered part of the common symbiotic toolkit that enabled plants to form beneficial symbioses.


Asunto(s)
Fabaceae , Micorrizas , Solanum lycopersicum , Solanum lycopersicum/genética , Nitrógeno , Raíces de Plantas , Simbiosis
8.
Physiol Plant ; 170(4): 607-621, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32880978

RESUMEN

Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula , Hidroxiprolina , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrógeno , Pentosiltransferasa , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Planta ; 252(4): 70, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32995943

RESUMEN

MAIN CONCLUSION: A comprehensive analysis of the role of brassinosteroids in nodulation, including their interactions with auxin and ethylene revealed that brassinosteroids inhibit infection, promote nodule initiation but do not influence nodule organogenesis or function. Nodulation, the symbiosis between legumes and rhizobial bacteria, is regulated by a suite of hormones including brassinosteroids. Previous studies have found that brassinosteroids promote nodule number by inhibiting ethylene biosynthesis. In this study, we examined the influence of brassinosteroids on the various stages of infection and nodule development. We utilise pea mutants, including brassinosteroid mutants lk, lka and lkb, the ethylene insensitive ein2 mutant and the lk ein2 double mutant, along with transgenic lines expressing the DR5::GUS auxin activity marker to investigate how brassinosteroids interact with ethylene and auxin during nodulation. We show that brassinosteroids inhibit the early stages of nodulation, including auxin accumulation, root hair deformation and infection thread formation, and demonstrate that infection thread formation is regulated by brassinosteroids in an ethylene independent manner. In contrast, brassinosteroids appear to act as promoters of nodule initiation through both an ethylene dependent and independent pathway. Although brassinosteroids positively influence the ultimate number of nodules formed, we found that brassinosteroid-deficiency did not influence nodule structure including the vascular pattern of auxin activity or nitrogen-fixation capacity. These findings suggest that brassinosteroids are negative regulators of infection but positive regulators of nodule initiation. Furthermore, brassinosteroids do not appear to be essential for nodule organogenesis or function. Given the influence of brassinosteroids on discreet stages of nodulation but not nodule function, manipulation of brassinosteroids may be an interesting avenue for future research on the optimisation of nodulation.


Asunto(s)
Brasinoesteroides , Etilenos , Ácidos Indolacéticos , Pisum sativum , Nodulación de la Raíz de la Planta , Brasinoesteroides/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Simbiosis
10.
J Exp Bot ; 71(22): 7171-7178, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32949136

RESUMEN

The induced dwarf mutant Rht12 was previously shown to have agronomic potential to replace the conventional DELLA mutants Rht-B1b/Rht-D1b in wheat. The Rht12 dwarfing gene is not associated with reduced coleoptile length (unlike the DELLA mutants) and it is dominant, characteristics which are shared with the previously characterized dwarfing genes Rht18 and Rht14. Using the Rht18/Rht14 model, a gibberellin (GA) 2-oxidase gene was identified in the Rht12 region on chromosome 5A. A screen for suppressor mutants in the Rht12 background identified tall overgrowth individuals that were shown to contain loss-of-function mutations in GA2oxidaseA13, demonstrating the role of this gene in the Rht12 dwarf phenotype. It was concluded that Rht12, Rht18, and Rht14 share the same height-reducing mechanism through the increased expression of GA 2-oxidase genes. Some of the overgrowth mutants generated in this study were semi-dwarf and taller than the original Rht12 dwarf, providing breeders with new sources of agronomically useful dwarfism.


Asunto(s)
Enanismo , Giberelinas , Fenotipo , Proteínas de Plantas/genética , Triticum/genética
11.
Physiol Plant ; 170(1): 132-147, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32385889

RESUMEN

The underlying mechanisms that determine whether two species can form a successful graft union (graft compatibility) remain obscure. Two prominent hypotheses are (1) the more closely related species are, the higher the graft success and (2) the vascular anatomy at the graft junction influences graft success. In this paper these two hypotheses are examined in a systematic way using graft combinations selected from a range of (a) phylogenetically close and more distant legume species, (b) species displaying different germination patterns and (c) scions and rootstocks possessing contrasting stem tissues and vascular patterns. Relatedness of species was not a good predictor of graft compatibility, as vascular reconnection can occur between distantly related species and can fail to occur in some more closely related species. Similarly, neither the stem tissues present at the graft junction nor the vascular anatomy correlated with the success of vascular reconnection. Relatedness and stem anatomy therefore do not appear to be the determining factors in successful vascular reconnection after grafting in legumes. These results are discussed in conjunction with other hypotheses such as the role of auxin.


Asunto(s)
Ácidos Indolacéticos , Filogenia
13.
Front Plant Sci ; 10: 269, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30930916

RESUMEN

Plant hormones play key roles in nodulation and arbuscular mycorrhizal (AM) associations. These two agriculturally and ecologically important symbioses enable plants to gain access to nutrients, in particular, nitrogen in the case of nodulation and phosphorous in the case of AM. Work over the past few decades has revealed how symbioses with nitrogen-fixing rhizobia, restricted almost exclusively to legumes, evolved in part from ancient AM symbioses formed by more than 80% of land plants. Although overlapping, these symbiotic programs also have important differences, including the de novo development of a new organ found only in nodulation. One emerging area of research is the role of two plant hormone groups, the gibberellins (GAs) and brassinosteroids (BRs), in the development and maintenance of these symbioses. In this review, we compare and contrast the roles of these hormones in the two symbioses, including potential interactions with other hormones. This not only focuses on legumes, most of which can host both symbionts, but also examines the role of these in AM development in non-legumes. GA acts by suppressing DELLA, and this regulatory module acts to negatively influence both rhizobial and mycorrhizal infection but appears to promote nodule organogenesis. While an overall positive role for BRs in nodulation and AM has been suggested by studies using mutants disrupted in BR biosynthesis or response, application studies indicate that BR may play a more complex role in nodulation. Given the nature of these symbioses, with events regulated both spatially and temporally, future studies should examine in more detail how GAs and BRs may influence precise events during these symbioses, including interactions with other hormone groups.

14.
Front Plant Sci ; 10: 432, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024597

RESUMEN

The key event that initiates nodule organogenesis is the perception of bacterial signal molecules, the Nod factors, triggering a complex of responses in epidermal and cortical cells of the root. The Nod factor signaling pathway interacts with plant hormones, including cytokinins and gibberellins. Activation of cytokinin signaling through the homeodomain-containing transcription factors KNOX is essential for nodule formation. The main regulators of gibberellin signaling, the DELLA proteins are also involved in regulation of nodule formation. However, the interaction between the cytokinin and gibberellin signaling pathways is not fully understood. Here, we show in Pisum sativum L. that the DELLA proteins can activate the expression of KNOX and BELL transcription factors involved in regulation of cytokinin metabolic and response genes. Consistently, pea la cry-s (della1 della2) mutant showed reduced ability to upregulate expression of some cytokinin metabolic genes during nodulation. Our results suggest that DELLA proteins may regulate cytokinin metabolism upon nodulation.

15.
Ann Bot ; 123(3): 429-439, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30380009

RESUMEN

BACKGROUND: The presence of a polar auxin transport stream has long been correlated with the differentiation and patterning of vascular cells across vascular plants. As our understanding of auxin transport and vascular development has grown, so too has evidence for the correlation between these processes. However, a clear understanding of the cellular and molecular mechanisms driving this correlation has not been elucidated. SCOPE: This article examines the hypothesis that canalization via polar auxin transport regulates vascular reconnection and patterning in the stem after wounding or grafting. We examine the evidence for the causal nature of the relationship and the suggested role that other hormones may play. Data are presented indicating that in grafted plants the degree of auxin transport may not always correlate with vascular reconnection. Furthermore, data on grafting success using plants with a range of hormone-related mutations indicate that these hormones may not be critical for vascular reconnection. CONCLUSIONS: In the past, excellent work examining elements of auxin synthesis, transport and response in relation to vascular development has been carried out. However, new experimental approaches are required to test more directly the hypothesis that auxin transport regulates stem vascular reconnection after wounding or grafting. This could include studies on the timing of the re-establishment of auxin transport and vascular reconnection after grafting and the influence of auxin transport mutants and inhibitors on these processes using live imaging.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Tallos de la Planta/fisiología , Transporte Biológico
16.
Front Plant Sci ; 9: 988, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042780

RESUMEN

Plants interact with diverse microbes including those that result in nutrient-acquiring symbioses. In order to balance the energy cost with the benefit gained, plants employ a systemic negative feedback loop to control the formation of these symbioses. This is particularly well-understood in nodulation, the symbiosis between legumes and nitrogen-fixing rhizobia, and is known as autoregulation of nodulation (AON). However, much less is understood about the autoregulation of the ancient arbuscular mycorrhizal symbioses that form between Glomeromycota fungi and the majority of land plants. Elegant physiological studies in legumes have indicated there is at least some overlap in the genes and signals that regulate these two symbioses but there are major gaps in our understanding. In this paper we examine the hypothesis that the autoregulation of mycorrhizae (AOM) pathway shares some elements with AON but that there are also some important differences. By reviewing the current knowledge of the AON pathway, we have identified important directions for future AOM studies. We also provide the first genetic evidence that CLV2 (an important element of the AON pathway) influences mycorrhizal development in a non-legume, tomato and review the interaction of the autoregulation pathway with plant hormones and nutrient status. Finally, we discuss whether autoregulation may play a role in the relationships plants form with other microbes.

17.
Plant Physiol ; 177(1): 168-180, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29545269

RESUMEN

Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.


Asunto(s)
Giberelinas/metabolismo , Proteínas de Plantas/genética , Triticum/crecimiento & desarrollo , Triticum/genética , Centrómero/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Giberelinas/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutagénesis , Proteínas de Plantas/metabolismo , Poliploidía , Regiones Promotoras Genéticas , Triticum/metabolismo
18.
J Exp Bot ; 69(8): 2117-2130, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29432555

RESUMEN

Leguminous plant roots can form a symbiosis with soil-dwelling nitrogen-fixing rhizobia, leading to the formation of a new root organ, the nodule. Successful nodulation requires co-ordination of spatially separated events in the root, including infection in the root epidermis and nodule organogenesis deep in the root cortex. We show that the hormone gibberellin plays distinct roles in these epidermal and cortical programmes. We employed a unique set of genetic material in pea that includes severely gibberellin-deficient lines and della-deficient lines that enabled us to characterize all stages of infection and nodule development. We confirmed that gibberellin suppresses infection thread formation and show that it also promotes nodule organogenesis into nitrogen-fixing organs. In both cases, this is achieved through the action of DELLA proteins. This study therefore provides a mechanism to explain how both low and high gibberellin signalling can result in reduced nodule number and reveals a clear role for gibberellin in the maturation of nodules into nitrogen-fixing organs. We also demonstrate that gibberellin acts independently of ethylene in promoting nodule development.


Asunto(s)
Giberelinas/metabolismo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Pisum sativum/crecimiento & desarrollo , Pisum sativum/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis
19.
Plant Signal Behav ; 13(2): e1428513, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373072

RESUMEN

Gibberellins (GAs) and cytokinins (CKs) are hormones that play antagonistic roles in several developmental processes in plants. However, there has been little exploration of their reciprocal interactions. Recent work in Medicago truncatula has revealed that GA signalling can regulate CK levels and response in roots. Here, we examine the reciprocal interaction, by assessing how CKs and the CRE1 (Cytokinin Response 1) CK receptor may influence endogenous GA levels. Real-Time RT-PCR analyses revealed that the expression of key GA biosynthesis genes is regulated in response to a short-term CK treatment and requires the CRE1 receptor. Similarly, GA quantifications indicated that a short-term CK treatment decreases the GA1 pool in wild-type plants and that GA levels are increased in the cre1 mutant compared to the wild-type. These data suggest that the M. truncatula CRE1-dependent CK signaling pathway negatively regulates bioactive GA levels.


Asunto(s)
Citocininas/metabolismo , Giberelinas/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Citocininas/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética
20.
Plant Physiol ; 175(1): 529-542, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28751316

RESUMEN

Strigolactones (SLs) influence the ability of legumes to associate with nitrogen-fixing bacteria. In this study, we determine the precise stage at which SLs influence nodulation. We show that SLs promote infection thread formation, as a null SL-deficient pea (Pisum sativum) mutant forms significantly fewer infection threads than wild-type plants, and this reduction can be overcome by the application of the synthetic SL GR24. We found no evidence that SLs influence physical events in the plant before or after infection thread formation, since SL-deficient plants displayed a similar ability to induce root hair curling in response to rhizobia or Nod lipochitooligosaccharides (LCOs) and SL-deficient nodules appear to fix nitrogen at a similar rate to those of wild-type plants. In contrast, an SL receptor mutant displayed no decrease in infection thread formation or nodule number, suggesting that SL deficiency may influence the bacterial partner. We found that this influence of SL deficiency was not due to altered flavonoid exudation or the ability of root exudates to stimulate bacterial growth. The influence of SL deficiency on infection thread formation was accompanied by reduced expression of some early nodulation genes. Importantly, SL synthesis is down-regulated by mutations in genes of the Nod LCO signaling pathway, and this requires the downstream transcription factor NSP2 but not NIN This, together with the fact that the expression of certain SL biosynthesis genes can be elevated in response to rhizobia/Nod LCOs, suggests that Nod LCOs may induce SL biosynthesis. SLs appear to influence nodulation independently of ethylene action, as SL-deficient and ethylene-insensitive double mutant plants display essentially additive phenotypes, and we found no evidence that SLs influence ethylene synthesis or vice versa.


Asunto(s)
Lactonas/farmacología , Pisum sativum/fisiología , Rhizobium/fisiología , Transducción de Señal , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lactonas/metabolismo , Lipopolisacáridos/farmacología , Mutación , Pisum sativum/efectos de los fármacos , Pisum sativum/genética , Pisum sativum/microbiología , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Simbiosis/efectos de los fármacos , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...